MJ
Mathew Jones
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(63% Open Access)
Cited by:
812
h-index:
36
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors

Giang Nguyen‐Dien et al.Oct 12, 2022
Abstract Cells selectively remove damaged or excessive mitochondria through mitophagy, a specialized form of autophagy, to maintain mitochondrial quality and quantity. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation, and mitochondrial damage. However, the mechanisms by which cells remove specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood. Here, we report that SCF FBXL4 , an SKP1/CUL1/F-box protein ubiquitin ligase complex, localizes to the mitochondrial outer membrane in unstressed cells and mediates the constitutive ubiquitylation and degradation of the mitophagy receptors NIX and BNIP3 to suppress basal levels of mitophagy. We demonstrate that, unlike wild-type FBXL4, pathogenic variants of FBXL4 that cause encephalopathic mtDNA depletion syndrome (MTDPS13), do not efficiently interact with the core SCF ubiquitin ligase machinery or mediate the degradation of NIX and BNIP3. Thus, we reveal a molecular mechanism that actively suppresses mitophagy via preventing NIX and BNIP3 accumulation and propose that excessive basal mitophagy in the FBXL4-associated mtDNA depletion syndrome is caused by dysregulation of NIX and BNIP3 turnover.
33
Citation5
0
Save
0

PPTC7 antagonizes mitophagy by promoting BNIP3 and NIX degradation via SCFFBXL4

Giang Nguyen et al.Jul 11, 2024
Abstract Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCF FBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCF FBXL4 -mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7–BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.
0
Citation2
0
Save
0

PPTC7 antagonizes mitophagy by promoting BNIP3 and NIX degradation via SCFFBXL4

Giang Nguyen‐Dien et al.Feb 24, 2024
Abstract Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCF FBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCF FBXL4 -mediated destruction of BNIP3 and NIX, suppressing both basal and induced mitophagy. Disruption of the phosphatase activity of PPTC7 is not required for BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-NIX/BNIP3 and PPTC7-FBXL4 interactions and their disruption interferes with both NIX/BNIP3 degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts NIX/BNIP3-induced mitophagy.
0
Citation1
0
Save
11

Autofluorescence is a biomarker of neural stem cell activation state

Christopher Morrow et al.Dec 15, 2022
Abstract Neural stem cells (NSCs) in the adult brain are primarily quiescent but can activate and enter the cell cycle to produce newborn neurons. NSC quiescence can be regulated by disease, injury, and age, however our understanding of NSC quiescence is limited by technical limitations imposed by the bias of markers used to isolate each population of NSCs and the lack of live-cell labeling strategies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has previously been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Here we asked whether autofluorescence could be used to discriminate NSC activation state. We found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) each have unique autofluorescence intensity and fluorescence lifetime profiles. Additionally, qNSCs specifically display an enrichment of a specific autofluorescent signal localizing to lysosomes that is highly predictive of cell state. These signals can be used as a graded marker of NSC quiescence to predict cell behavior and track the dynamics of quiescence exit at single cell resolution in vitro and in vivo . Through coupling autofluorescence imaging with single-cell RNA sequencing in vitro and in vivo , we provide a high-resolution resource revealing transcriptional features linked to rapid NSC activation and deep quiescence. Taken together, we describe a single-cell resolution, non-destructive, live-cell, label-free strategy for measuring NSC activation state in vitro and in vivo and use this tool to expand our understanding of adult neurogenesis.
11
Citation1
0
Save
0

Cortical Tonic Inhibition Regulates the Expression of Spike-and-Wave Discharges Associated with Absence Epilepsy.

Kile Mangan et al.Jul 17, 2017
Synchronous and bilateral spike-and-wave discharges accompany nonconvulsive behavioral and cognitive arrest during seizures associated with absence epilepsy. Previous investigation of multiple absence animal models suggests that the underlying cause of absence seizures is an increase in thalamic inhibitory tonic currents. In contrast, in this study we provide evidence that the level of cortical tonic inhibition also regulates absence seizure expression. Using continuous video-EEG recordings to monitor absence seizures and spike-and-wave discharge expression we show that pharmacological blockade of cortical tonic inhibition provokes absence seizures in wild-type mice. Furthermore, we show that pharmacological rescue of cortical tonic inhibition in an absence mouse (γ2R43Q) model, which lacks tonic inhibition, suppresses absence seizure and spike-and-wave discharge expression. Collectively, these results suggest an optimum level of tonic inhibition in the thalamocortical circuit is required for normal functioning and that a deviation from this optimum results in aberrant thalamocortical function, SWDs and absence seizures.
Load More