Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
XZ
Xiaoling Zhang
Author with expertise in Pancreatic Cancer Research and Treatment
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
1
(100% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Meaningful nomograms based on systemic immune inflammation index predicted survival in metastatic pancreatic cancer patients receiving chemotherapy

Yanan Sun et al.Jul 1, 2024
Abstract Objective The purpose of the study is to construct meaningful nomogram models according to the independent prognostic factor for metastatic pancreatic cancer receiving chemotherapy. Methods This study is retrospective and consecutively included 143 patients from January 2013 to June 2021. The receiver operating characteristic (ROC) curve with the area under the curve (AUC) is utilized to determine the optimal cut‐off value. The Kaplan–Meier survival analysis, univariate and multivariable Cox regression analysis are exploited to identify the correlation of inflammatory biomarkers and clinicopathological features with survival. R software are run to construct nomograms based on independent risk factors to visualize survival. Nomogram model is examined using calibration curve and decision curve analysis (DCA). Results The best cut‐off values of 966.71, 0.257, and 2.54 for the systemic immunological inflammation index (SII), monocyte‐to‐lymphocyte ratio (MLR), and neutrophil‐to‐lymphocyte ratio (NLR) were obtained by ROC analysis. Cox proportional‐hazards model revealed that baseline SII, history of drinking and metastasis sites were independent prognostic indices for survival. We established prognostic nomograms for primary endpoints of this study. The nomograms' predictive potential and clinical efficacy have been evaluated by calibration curves and DCA. Conclusion We constructed nomograms based on independent prognostic factors, these models have promising applications in clinical practice to assist clinicians in personalizing the management of patients.
0
Citation1
0
Save