HY
Hongxun Yao
Author with expertise in Image Feature Retrieval and Recognition Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(30% Open Access)
Cited by:
4,215
h-index:
46
/
i10-index:
148
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BioMagResBank

Eldon Ulrich et al.Nov 6, 2007
The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pK(a) values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional (1)H and (13)C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions.
0

Deep Feature Fusion for VHR Remote Sensing Scene Classification

Souleyman Chaib et al.May 25, 2017
The rapid development of remote sensing technology allows us to get images with high and very high resolution (VHR). VHR imagery scene classification has become an important and challenging problem. In this paper, we introduce a framework for VHR scene understanding. First, the pretrained visual geometry group network (VGG-Net) model is proposed as deep feature extractors to extract informative features from the original VHR images. Second, we select the fully connected layers constructed by VGG-Net in which each layer is regarded as separated feature descriptors. And then we combine between them to construct final representation of the VHR image scenes. Third, discriminant correlation analysis (DCA) is adopted as feature fusion strategy to further refine the original features extracting from VGG-Net, which allows a more efficient fusion approach with small cost than the traditional feature fusion strategies. We apply our approach to three challenging data sets: 1) UC MERCED data set that contains 21 different areal scene categories with submeter resolution; 2) WHU-RS data set that contains 19 challenging scene categories with various resolutions; and 3) the Aerial Image data set that has a number of 10 000 images within 30 challenging scene categories with various resolutions. The experimental results demonstrate that our proposed method outperforms the state-of-the-art approaches. Using feature fusion technique achieves a higher accuracy than solely using the raw deep features. Moreover, the proposed method based on DCA fusion produces good informative features to describe the images scene with much lower dimension.
0
Citation410
0
Save
0

Pix2Vox: Context-Aware 3D Reconstruction From Single and Multi-View Images

Haozhe Xie et al.Oct 1, 2019
Recovering the 3D representation of an object from single-view or multi-view RGB images by deep neural networks has attracted increasing attention in the past few years. Several mainstream works (e.g., 3D-R2N2) use recurrent neural networks (RNNs) to fuse multiple feature maps extracted from input images sequentially. However, when given the same set of input images with different orders, RNN-based approaches are unable to produce consistent reconstruction results. Moreover, due to long-term memory loss, RNNs cannot fully exploit input images to refine reconstruction results. To solve these problems, we propose a novel framework for single-view and multi-view 3D reconstruction, named Pix2Vox. By using a well-designed encoder-decoder, it generates a coarse 3D volume from each input image. Then, a context-aware fusion module is introduced to adaptively select high-quality reconstructions for each part (e.g., table legs) from different coarse 3D volumes to obtain a fused 3D volume. Finally, a refiner further refines the fused 3D volume to generate the final output. Experimental results on the ShapeNet and Pix3D benchmarks indicate that the proposed Pix2Vox outperforms state-of-the-arts by a large margin. Furthermore, the proposed method is 24 times faster than 3D-R2N2 in terms of backward inference time. The experiments on ShapeNet unseen 3D categories have shown the superior generalization abilities of our method.
0
Citation271
0
Save