ME
Mohamed Elhoseny
Author with expertise in Internet of Things and Edge Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
23
(17% Open Access)
Cited by:
4,694
h-index:
70
/
i10-index:
217
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Secure Medical Data Transmission Model for IoT-Based Healthcare Systems

Mohamed Elhoseny et al.Jan 1, 2018
Due to the significant advancement of the Internet of Things (IoT) in the healthcare sector, the security, and the integrity of the medical data became big challenges for healthcare services applications. This paper proposes a hybrid security model for securing the diagnostic text data in medical images. The proposed model is developed through integrating either 2-D discrete wavelet transform 1 level (2D-DWT-1L) or 2-D discrete wavelet transform 2 level (2D-DWT-2L) steganography technique with a proposed hybrid encryption scheme. The proposed hybrid encryption schema is built using a combination of Advanced Encryption Standard, and Rivest, Shamir, and Adleman algorithms. The proposed model starts by encrypting the secret data; then it hides the result in a cover image using 2D-DWT-1L or 2D-DWT-2L. Both color and gray-scale images are used as cover images to conceal different text sizes. The performance of the proposed system was evaluated based on six statistical parameters; the peak signal-to-noise ratio (PSNR), mean square error (MSE), bit error rate (BER), structural similarity (SSIM), structural content (SC), and correlation. The PSNR values were relatively varied from 50.59 to 57.44 in case of color images and from 50.52 to 56.09 with the gray scale images. The MSE values varied from 0.12 to 0.57 for the color images and from 0.14 to 0.57 for the gray scale images. The BER values were zero for both images, while SSIM, SC, and correlation values were ones for both images. Compared with the state-of-the-art methods, the proposed model proved its ability to hide the confidential patient's data into a transmitted cover image with high imperceptibility, capacity, and minimal deterioration in the received stego-image.
0

Feature selection based on artificial bee colony and gradient boosting decision tree

Hannah Rao et al.Nov 5, 2018
Data from many real-world applications can be high dimensional and features of such data are usually highly redundant. Identifying informative features has become an important step for data mining to not only circumvent the curse of dimensionality but to reduce the amount of data for processing. In this paper, we propose a novel feature selection method based on bee colony and gradient boosting decision tree aiming at addressing problems such as efficiency and informative quality of the selected features. Our method achieves global optimization of the inputs of the decision tree using the bee colony algorithm to identify the informative features. The method initializes the feature space spanned by the dataset. Less relevant features are suppressed according to the information they contribute to the decision making using an artificial bee colony algorithm. Experiments are conducted with two breast cancer datasets and six datasets from the public data repository. Experimental results demonstrate that the proposed method effectively reduces the dimensions of the dataset and achieves superior classification accuracy using the selected features.
0

Efficient Fire Detection for Uncertain Surveillance Environment

Khan Muhammad et al.Feb 5, 2019
Tactile Internet can combine multiple technologies by enabling intelligence via mobile edge computing and data transmission over a 5G network. Recently, several convolutional neural networks (CNN) based methods via edge intelligence are utilized for fire detection in certain environment with reasonable accuracy and running time. However, these methods fail to detect fire in uncertain Internet of Things (IoT) environment having smoke, fog, and snow. Furthermore, achieving good accuracy with reduced running time and model size is challenging for resource constrained devices. Therefore, in this paper, we propose an efficient CNN based system for fire detection in videos captured in uncertain surveillance scenarios. Our approach uses light-weight deep neural networks with no dense fully connected layers, making it computationally inexpensive. Experiments are conducted on benchmark fire datasets and the results reveal the better performance of our approach compared to state-of-the-art. Considering the accuracy, false alarms, size, and running time of our system, we believe that it is a suitable candidate for fire detection in uncertain IoT environment for mobile and embedded vision applications during surveillance.
Load More