Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
SG
Sebastian Gerland
Author with expertise in Arctic Sea Ice Variability and Decline
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
2,546
h-index:
51
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard

Harald Svendsen et al.Jan 6, 2002
Kongsfjorden-Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up-to-date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large-scale circulation and small-scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run-off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi-diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.
0
Paper
Citation714
0
Save
0

The marine ecosystem of Kongsfjorden, Svalbard

Haakon Hop et al.Jun 1, 2002
Kongsfjorden is a glacial fjord in the Arctic (Svalbard) that is influenced by both Atlantic and Arctic water masses and harbours a mixture of boreal and Arctic flora and fauna. Inputs from large tidal glaciers create steep environmental gradients in sedimentation and salinity along the length of this fjord. The glacial inputs cause reduced biomass and diversity in the benthic community in the inner fjord. Zooplankton suffers direct mortality from the glacial outflow and primary production is reduced because of limited light levels in the turbid, mixed inner waters. The magnitude of the glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground for marine mammals and seabirds. Even though the fjord contains some boreal fauna, the prey consumed by upper trophic levels is mainly Arctic organisms. Marine mammals constitute the largest top-predator biomass, but seabirds have the largest energy intake and also export nutrients and energy out of the marine environment. Kongsfjorden has received a lot of research attention in the recent past. The current interest in the fjord is primarily based on the fact that Kongsfjorden is particularly suitable as a site for exploring the impacts of possible climate changes, with Atlantic water influx and melting of tidal glaciers both being linked to climate variability. The pelagic ecosystem is likely to be most sensitive to the Atlantic versus Arctic influence, whereas the benthic ecosystem is more affected by long-term changes in hydrography as well as changes in glacial runoff and sedimentation. Kongsfjorden will be an important Arctic monitoring site over the coming decades and a review of the current knowledge, and a gap analysis, are therefore warranted. Important knowledge gaps include a lack of quantitative data on production, abundance of key prey species, and the role of advection on the biological communities in the fjord.
0
Paper
Citation576
0
Save
0

Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

Philipp Assmy et al.Jan 19, 2017
Abstract The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii , caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m −2 . Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
0
Paper
Citation298
0
Save
0

Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution

Caixin Wang et al.Jun 14, 2019
Abstract. Rapid changes are occurring in the Arctic, including a reduction in sea ice thickness and coverage and a shift towards younger and thinner sea ice. Snow and sea ice models are often used to study these ongoing changes in the Arctic, and are typically forced by atmospheric reanalyses in absence of observations. ERA5 is a new global reanalysis that will replace the widely used ERA-Interim (ERA-I). In this study, we compare the 2 m air temperature (T2M), snowfall (SF) and total precipitation (TP) from ERA-I and ERA5, and evaluate these products using buoy observations from Arctic sea ice for the years 2010 to 2016. We further assess how biases in reanalyses can influence the snow and sea ice evolution in the Arctic, when used to force a thermodynamic sea ice model. We find that ERA5 is generally warmer than ERA-I in winter and spring (0–1.2 ∘C), but colder than ERA-I in summer and autumn (0–0.6 ∘C) over Arctic sea ice. Both reanalyses have a warm bias over Arctic sea ice relative to buoy observations. The warm bias is smaller in the warm season, and larger in the cold season, especially when the T2M is below −25 ∘C in the Atlantic and Pacific sectors. Interestingly, the warm bias for ERA-I and new ERA5 is on average 3.4 and 5.4 ∘C (daily mean), respectively, when T2M is lower than −25 ∘C. The TP and SF along the buoy trajectories and over Arctic sea ice are consistently higher in ERA5 than in ERA-I. Over Arctic sea ice, the TP in ERA5 is typically less than 10 mm snow water equivalent (SWE) greater than in ERA-I in any of the seasons, while the SF in ERA5 can be 50 mm SWE higher than in ERA-I in a season. The largest increase in annual TP (40–100 mm) and SF (100–200 mm) in ERA5 occurs in the Atlantic sector. The SF to TP ratio is larger in ERA5 than in ERA-I, on average 0.6 for ERA-I and 0.8 for ERA5 along the buoy trajectories. Thus, the substantial anomalous Arctic rainfall in ERA-I is reduced in ERA5, especially in summer and autumn. Simulations with a 1-D thermodynamic sea ice model demonstrate that the warm bias in ERA5 acts to reduce thermodynamic ice growth. The higher precipitation and snowfall in ERA5 results in a thicker snowpack that allows less heat loss to the atmosphere. Thus, the larger winter warm bias and higher precipitation in ERA5, compared with ERA-I, result in thinner ice thickness at the end of the growth season when using ERA5; however the effect is small during the freezing period.
0
Paper
Citation244
0
Save
0

Overview of the MOSAiC expedition: Snow and sea ice

Marcel Nicolaus et al.Jan 1, 2022
Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice.
0
Paper
Citation223
0
Save
0

Climate warming impacts on ringed seal breeding habitat in Svalbard

Kit Kovacs et al.Jul 14, 2024
Global warming is occurring at an accelerated rate in the Arctic compared to other parts of the planet with sea-ice declines being among the most striking manifestations of Arctic climate-related changes. Impacts of ongoing Arctic environmental change have been documented for biota throughout marine ecosystems from protists to top predators. Ice-dependent species with specific habitat needs are particularly vulnerable to the ongoing changes. The ringed seal (Pusa hispida) is an ice-associated Arctic endemic species that gives birth and rests in snow caves built in drifts of snow over holes in the sea ice created and maintained by these seals. In this study we create a snow-on-sea-ice reproductive lair habitat model for ringed seals in the Svalbard Archipelago (Norway), a hot-spot of Arctic warming. We use SnowModel, a physics-based snow distribution and evolution simulation system, as the core for a lair habitat model. The model quantifies snow depth and blowing snow fluxes and also relates these variables to snow availability for seal lair habitat. This was accomplished by developing an ecologically informed snow variable that quantifies potential seal lair habitat availability as a function of blowing snow fluxes. Model simulations were performed for the period September 1987 – August 2021 (34 years) on a 500 m × 500 m grid using a daily time-step. Field observations of snow depth and gridded analyses of sea-ice concentration and near-surface (+10 m) atmospheric forcing (air temperature, relative humidity, precipitation, and wind speed and direction) were incorporated within the model simulations. The results show that both snow depth and potential seal lair habitat have been decreasing in Svalbard for the last two decades. If current trends continue, as expected, ringed seal lair habitat will cease to exist across much of the Svalbard Archipelago in the next decade, putting this important Arctic species at risk of regional extirpation.
0
Paper
Citation1
0
Save