MS
Michael Sentef
Author with expertise in Topological Insulators and Superconductors
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
756
h-index:
36
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene

Michael Sentef et al.May 11, 2015
The control of physical properties of solids with short laser pulses is an intriguing prospect of ultrafast materials science. Continuous-wave high-frequency laser driving with circular polarization was predicted to induce a light-matter coupled new state possessing a quasi-static band structure with an energy gap and a quantum Hall effect, coined "Floquet topological insulator". Whereas the envisioned Floquet topological insulator requires well separated Floquet bands and therefore high-frequency pumping, a natural follow-up question regards the creation of Floquet-like states in graphene with realistic pump laser pulses. Here we predict that with short low-frequency laser pulses attainable in pump-probe experiments, states with local spectral gaps at the Dirac points and novel pseudospin textures can be achieved in graphene using circular light polarization. We demonstrate that time- and angle-resolved photoemission spectroscopy can track these states by measuring sizeable energy gaps and quasi-Floquet energy bands that form on femtosecond time scales. By analyzing Floquet energy level crossings and snapshots of pseudospin textures near the Dirac points, we identify transitions to new states with optically induced nontrivial changes of sublattice mixing that can lead to Berry curvature corrections of electrical transport and magnetization.
0

Non-adiabatic Couplings in Surface Hopping with Tight Binding Density Functional Theory: The Case of Molecular Motors

Gonzalo Mirón et al.Nov 20, 2024
Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems. Consequently, simulations are often performed on simplified models to interpret the experimental results. In this context, a variety of techniques have been developed to perform NAMD using approximate methods, particularly density functional tight binding (DFTB). Despite the use of these techniques on large systems, where ab initio methods are computationally prohibitive, a comprehensive validation has been lacking. In this work, we present a new implementation of trajectory surface hopping combined with DFTB, utilizing nonadiabatic coupling vectors. We selected the methaniminium cation and furan systems for validation, providing an exhaustive comparison with the higher-level electronic structure methods. As a case study, we simulated a system from the class of molecular motors, which has been extensively studied experimentally but remains challenging to simulate with ab initio methods due to its inherent complexity. Our approach effectively captures the key photophysical mechanism of dihedral rotation after the absorption of light. Additionally, we successfully reproduced the transition from the bright to dark states observed in the time-dependent fluorescence experiments, providing valuable insights into this critical part of the photophysical behavior in molecular motors.