JW
John Wimarsson
Author with expertise in Formation and Evolution of the Solar System
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
5
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Dynamical State of the Didymos System before and after the DART Impact

D. Richardson et al.Aug 1, 2024
Abstract NASA’s Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the natural satellite of (65803) Didymos, on 2022 September 26, as a first successful test of kinetic impactor technology for deflecting a potentially hazardous object in space. The experiment resulted in a small change to the dynamical state of the Didymos system consistent with expectations and Level 1 mission requirements. In the preencounter paper, predictions were put forward regarding the pre- and postimpact dynamical state of the Didymos system. Here we assess these predictions, update preliminary findings published after the impact, report on new findings related to dynamics, and provide implications for ESA’s Hera mission to Didymos, scheduled for launch in 2024 October with arrival in 2026 December. Preencounter predictions tested to date are largely in line with observations, despite the unexpected, flattened appearance of Didymos compared to the radar model and the apparent preimpact oblate shape of Dimorphos (with implications for the origin of the system that remain under investigation). New findings include that Dimorphos likely became prolate due to the impact and may have entered a tumbling rotation state. A possible detection of a postimpact transient secular decrease in the binary orbital period suggests possible dynamical coupling with persistent ejecta. Timescales for damping of any tumbling and clearing of any debris are uncertain. The largest uncertainty in the momentum transfer enhancement factor of the DART impact remains the mass of Dimorphos, which will be resolved by the Hera mission.
0

Rapid formation of binary asteroid systems post rotational failure: A recipe for making atypically shaped satellites

John Wimarsson et al.Jul 20, 2024
Binary asteroid formation is a highly complex process, which has been highlighted with recent observations of satellites with unexpected shapes, such as the oblate Dimorphos by the NASA DART mission and the contact binary Selam by NASA's Lucy mission. There is no clear consensus on which dynamical mechanisms determine the final shape of these objects. In turn, we explore a formation pathway where spin-up and rotational failure of a rubble pile asteroid lead to mass-shedding and a wide circumasteroidal debris disk in which the satellite forms. Using a combination of smooth-particle hydrodynamical and N-body simulations, we study the dynamical evolution in detail. We find that a debris disk containing matter corresponding to a few percent of the primary asteroid mass extending beyond the fluid Roche limit can consistently form both oblate and bilobate satellites via a series of tidal encounters with the primary body and mergers with other gravitational aggregates. Principally, satellites end up prolate (elongated) and on synchronous orbits, accreting mainly in a radial direction while tides from the primary asteroid keep the shape intact. However, close encounters and mergers can break the orbital state, leading to orbital migration and deformation. Satellite–satellite impacts occurring in this regime have lower impact velocities than merger-driven moon formation in e.g. planetary rings, leading to soft impacts between differently sized, non-spherical bodies. The resulting post-merger shape of the satellite is highly dependent on the impact geometry. Only moons having experienced a prior mild or catastrophic tidal disruption during a close encounter with the primary asteroid can become oblate spheroids, which is consistent with the predominantly prolate observed population of binary asteroid satellites.