GL
Guang‐Hui Liu
Author with expertise in Structure and Function of the Nuclear Pore Complex
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
6,393
h-index:
72
/
i10-index:
251
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling

Bryan Thines et al.Jul 18, 2007
+7
M
L
B
0

In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration

Keiichiro Suzuki et al.Nov 15, 2016
+32
Z
T
K
A method for CRISPR-based genome editing that harnesses cellular non-homologous end joining activity to achieve targeted DNA knock-in in non-dividing tissues. A current challenge in genome editing is achieving efficient targeted integration of transgenes in post-mitotic cells. These authors develop a method for CRISPR-based genome editing that harnesses the non-homologous-end-joining double-strand-break repair pathway to achieve targeted knock-in in dividing and non-dividing tissues. Although further development is needed to increase efficacy, the authors show the potential application of this method for targeted knock-in in post-mitotic neurons and other non-dividing tissues, and provide initial exploratory data on its potential application for disease correction in retinal pigment epithelium models. Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient1, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders2. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)3,4 technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
0
Citation988
0
Save
0

NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK

Guang‐Hui Liu et al.Jan 15, 2008
X
J
G
Constitutively activated NF-κB occurs in many inflammatory and tumor tissues. Does it interfere with anti-inflammatory or anti-tumor signaling pathway? Here, we report that NF-κB p65 subunit repressed the Nrf2-antioxidant response element (ARE) pathway at transcriptional level. In the cells where NF-κB and Nrf2 were simultaneously activated, p65 unidirectionally antagonized the transcriptional activity of Nrf2. In the p65-overexpressing cells, the ARE-dependent expression of heme oxygenase-1 was strongly suppressed. However, p65 inhibited the ARE-driven gene transcription in a way that was independent of its own transcriptional activity. Two mechanisms were found to coordinate the p65-mediated repression of ARE: (1) p65 selectively deprives CREB binding protein (CBP) from Nrf2 by competitive interaction with the CH1-KIX domain of CBP, which results in inactivation of Nrf2. The inactivation depends on PKA catalytic subunit-mediated phosphorylation of p65 at S276. (2) p65 promotes recruitment of histone deacetylase 3 (HDAC3), the corepressor, to ARE by facilitating the interaction of HDAC3 with either CBP or MafK, leading to local histone hypoacetylation. This investigation revealed the participation of NF-κB p65 in the negative regulation of Nrf2-ARE signaling, and might provide a new insight into a possible role of NF-κB in suppressing the expression of anti-inflammatory or anti-tumor genes.
0
Citation581
0
Save
0

Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022

Yongbiao Xue et al.Oct 8, 2021
+73
Z
Y
Y
The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a family of database resources to support global research in both academia and industry. With the explosively accumulated multi-omics data at ever-faster rates, CNCB-NGDC is constantly scaling up and updating its core database resources through big data archive, curation, integration and analysis. In the past year, efforts have been made to synthesize the growing data and knowledge, particularly in single-cell omics and precision medicine research, and a series of resources have been newly developed, updated and enhanced. Moreover, CNCB-NGDC has continued to daily update SARS-CoV-2 genome sequences, variants, haplotypes and literature. Particularly, OpenLB, an open library of bioscience, has been established by providing easy and open access to a substantial number of abstract texts from PubMed, bioRxiv and medRxiv. In addition, Database Commons is significantly updated by cataloguing a full list of global databases, and BLAST tools are newly deployed to provide online sequence search services. All these resources along with their services are publicly accessible at https://ngdc.cncb.ac.cn.
0
Citation533
0
Save
0

Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome

Guang‐Hui Liu et al.Feb 23, 2011
+14
S
B
G
The premature ageing disorder Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic condition characterized by a rapid onset of signs associated with normal ageing, such as atherosclerosis and the degeneration of vascular smooth-muscle cells. Liu et al. report that the altered structure of the nuclear envelope and epigenetic modifications that accumulate during physiological ageing or under specific disease conditions can be restored to normalcy by reprogramming somatic cell lines established with fibroblasts from patients with HGPS as induced pluripotent stem (iPS) cells. Directed differentiation of the resulting iPS cells as vascular smooth-muscle cells then leads to the appearance of the premature senescence phenotypes associated with vascular ageing. This HGPS iPS cell model provides a way to study the mechanisms regulating premature and normal ageing in vitro. Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease1,2,3,4,5, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs)6,7,8. HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin9,10,11,12. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing6,12,13, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.
0
Citation529
0
Save
0

A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging

Weiqi Zhang et al.May 1, 2015
+31
K
J
W
Heterochromatin in aging stem cells Analysis of human aging syndromes, such as Werner syndrome (WS), may lead to greater understanding of both premature and normal aging. Zhang et al. generated isogenic WS-specific human embryonic stem cell lines (see the Perspective by Brunauer and Kennedy). WS-mesenchymal stem cells displayed features characteristic of premature aging, including heterochromatin disorganization. WRN protein thus functions in the maintenance of heterochromatin, and heterochromatin alterations may represent a driving force of human aging. Science , this issue p. 1160 ; see also p. 1093
0
Citation452
0
Save
0

Repression of the Antioxidant NRF2 Pathway in Premature Aging

Nard Kubben et al.Jun 1, 2016
+5
L
W
N
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal premature aging disorder. The disease is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A, leading, through unknown mechanisms, to diverse morphological, epigenetic, and genomic damage and to mesenchymal stem cell (MSC) attrition in vivo. Using a high-throughput siRNA screen, we identify the NRF2 antioxidant pathway as a driver mechanism in HGPS. Progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired NRF2 transcriptional activity and consequently increased chronic oxidative stress. Suppressed NRF2 activity or increased oxidative stress is sufficient to recapitulate HGPS aging defects, whereas reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects and restores in vivo viability of MSCs in an animal model. These findings identify repression of the NRF2-mediated antioxidative response as a key contributor to the premature aging phenotype.
0
Citation412
0
Save
0

Single-Cell Transcriptomic Atlas of Primate Ovarian Aging

Si Wang et al.Jan 30, 2020
+18
J
Y
S
Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.
0
Citation382
0
Save
0

Progressive degeneration of human neural stem cells caused by pathogenic LRRK2

Guang‐Hui Liu et al.Oct 16, 2012
+20
K
J
G
Investigation of neural cells from post-mortem human brains and differentiated from patient-derived induced pluripotent stem cells shows that the LRRK2 mutation (G2019S) associated with familial and sporadic Parkinson's disease correlates with abnormalities at the nuclear envelope. The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is associated with familial and sporadic Parkinson's disease, but the pathological mechanism involved is unclear. Here, Juan Carlos Izpisua Belmonte and colleagues report that neurons bearing the LRRK2(G2019S) mutation have profound abnormalities at the nuclear envelope. The authors validate this finding in neurons differentiated from patient-derived induced pluripotent stem cells, as well as in neurons from postmortem brains. These findings associate the nucleus with Parkinson's disease pathology, and have implications for diagnosis and the potential development of targeted therapeutics. Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing1,2,3,4. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson’s disease as well as impairment of adult neurogenesis in mice5. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson’s disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson’s disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson’s disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson’s disease pathology and may help to open new avenues for Parkinson’s disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
0
Citation315
0
Save
1

Resurrection of endogenous retroviruses during aging reinforces senescence

Xiaoqian Liu et al.Feb 22, 2021
+30
J
Z
X
SUMMARY Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process are largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. Activation of ERVs was also observed in organs of aged primates and mice, as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging. In brief Liu and colleagues uncover the ways in which de-repression of human endogenous retrovirus triggers cellular senescence and tissue aging; the findings provide fresh insights into therapeutic strategies for alleviating aging. Highlights Derepression of the endogenous retrovirus contributes to programmed aging Upregulation of HERVK triggers the innate immune response and cellular senescence Extracellular HERVK retrovirus-like particles induce senescence in young cells Endogenous retrovirus serves as a potential target to alleviate agings Graphical abstract
1
Citation8
0
Save
Load More