MT
Marko Topič
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(65% Open Access)
Cited by:
3,629
h-index:
47
/
i10-index:
142
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry

P. Löper et al.Dec 10, 2014
The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi–Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers–Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.
0

Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells

Zachary Holman et al.Jan 4, 2013
Silicon heterojunction solar cells have record-high open-circuit voltages but suffer from reduced short-circuit currents due in large part to parasitic absorption in the amorphous silicon, transparent conductive oxide (TCO), and metal layers. We previously identified and quantified visible and ultraviolet parasitic absorption in heterojunctions; here, we extend the analysis to infrared light in heterojunction solar cells with efficiencies exceeding 20%. An extensive experimental investigation of the TCO layers indicates that the rear layer serves as a crucial electrical contact between amorphous silicon and the metal reflector. If very transparent and at least 150 nm thick, the rear TCO layer also maximizes infrared response. An optical model that combines a ray-tracing algorithm and a thin-film simulator reveals why: parallel-polarized light arriving at the rear surface at oblique incidence excites surface plasmons in the metal reflector, and this parasitic absorption in the metal can exceed the absorption in the TCO layer itself. Thick TCO layers—or dielectric layers, in rear-passivated diffused-junction silicon solar cells—reduce the penetration of the evanescent waves to the metal, thereby increasing internal reflectance at the rear surface. With an optimized rear TCO layer, the front TCO dominates the infrared losses in heterojunction solar cells. As its thickness and carrier density are constrained by anti-reflection and lateral conduction requirements, the front TCO can be improved only by increasing its electron mobility. Cell results attest to the power of TCO optimization: With a high-mobility front TCO and a 150-nm-thick, highly transparent rear ITO layer, we recently reported a 4-cm2 silicon heterojunction solar cell with an active-area short-circuit current density of nearly 39 mA/cm2 and a certified efficiency of over 22%.
0

Reducing Voltage Loss via Dipole Tuning for Electron‐Transport in Efficient and Stable Perovskite‐Silicon Tandem Solar Cells

Guoliang Wang et al.Jul 22, 2024
Abstract C 60 is a widely used electron selective material for p–i–n perovskite cells, however, its energy level does not match well with that of a wide‐bandgap perovskite, resulting in low open‐circuit voltage (V OC ) and fill factor ( FF ). To overcome this issue, ultra‐thin LiF has been widely used as an interlayer between C 60 and perovskite layers facilitating efficient electron extraction but resulting in instability. In this work, the use of a piperidinium bromide (PpBr) is reported as an interlayer between C 60 and perovskite, and the interlayer further is optimized by introducing an additional oxygen atom on the opposite side of the NH 2 + . This results in morpholinium bromide (MLBr) with increased dipole moment. Because of this, MLBr is highly effective in minimizing the energy band mismatch between perovskite and C 60 layer for electron extraction while at the same time passivating defects. The champion single junction 1.67 eV MLBr solar cell produced a PCE of 21.9% and the champion monolithic MLBr perovskite‐Si tandem cell produced a PCE of 28.8%. Most importantly, both encapsulated MLBr and PpBr devices retain over 97% of their initial efficiency after 400 thermal cycles (between −40 and 85 °C), twice the number of cycles specified by the International Electrotechnical Commission (IEC) 61215 photovoltaic module standard.
Load More