Patrick JoyceVerified
Verified Account
Verified
Master's Degree '15, Boston University
Member for 5 years, 1 month and 6 days
Med student interested in neuroscience and its clinical applications
Achievements
Open Science Supporter
Active user
Cited Author
Open Access Advocate
Peer Reviewer
Key Stats
Upvotes received:
1060
Publications:
3
(67% Open Access)
Cited by:
257
h-index:
9
/
i10-index:
7
Amount funded:
73,181
Reputation
Molecular Biology
64%
Infectious Diseases
2%
Physiology
< 1%
Show more
How is this calculated?
Publications
3

A DNA hypermethylation module for the stem/progenitor cell signature of cancer

Hariharan Easwaran et al.Mar 5, 2012
Many DNA-hypermethylated cancer genes are occupied by the Polycomb (PcG) repressor complex in embryonic stem cells (ESCs). Their prevalence in the full spectrum of cancers, the exact context of chromatin involved, and their status in adult cell renewal systems are unknown. Using a genome-wide analysis, we demonstrate that ∼75% of hypermethylated genes are marked by PcG in the context of bivalent chromatin in both ESCs and adult stem/progenitor cells. A large number of these genes are key developmental regulators, and a subset, which we call the “DNA hypermethylation module,” comprises a portion of the PcG target genes that are down-regulated in cancer. Genes with bivalent chromatin have a low, poised gene transcription state that has been shown to maintain stemness and self-renewal in normal stem cells. However, when DNA-hypermethylated in tumors, we find that these genes are further repressed. We also show that the methylation status of these genes can cluster important subtypes of colon and breast cancers. By evaluating the subsets of genes that are methylated in different cancers with consideration of their chromatin status in ESCs, we provide evidence that DNA hypermethylation preferentially targets the subset of PcG genes that are developmental regulators, and this may contribute to the stem-like state of cancer. Additionally, the capacity for global methylation profiling to cluster tumors by phenotype may have important implications for further refining tumor behavior patterns that may ultimately aid therapeutic interventions.
3
Citation257
0
Save
0

Flow capabilities of arterial and drainage cannulae during venoarterial extracorporeal membrane oxygenation: A simulation model

Avishka Wickramarachchi et al.May 23, 2024
Background Large cannulae can increase cannula-related complications during venoarterial extracorporeal membrane oxygenation (VA ECMO). Conversely, the ability for small cannulae to provide adequate support is poorly understood. Therefore, we aimed to evaluate a range of cannula sizes and VA ECMO flow rates in a simulated patient under various disease states. Methods Arterial cannulae sizes between 13 and 21 Fr and drainage cannula sizes between 21 and 25 Fr were tested in a VA ECMO circuit connected to a mock circulation loop simulating a patient with severe left ventricular failure. Systemic and pulmonary hypertension, physiologically normal, and hypotension were simulated by varying systemic and pulmonary vascular resistances (SVR and PVR, respectively). All cannula combinations were evaluated against all combinations of SVR, PVR, and VA ECMO flow rates. Results A 15 Fr arterial cannula combined with a 21 Fr drainage cannula could provide >4 L/min of total flow and a mean arterial pressure of 81.1 mmHg. Changes in SVR produced marked changes to all measured parameters, while changes to PVR had minimal effect. Larger drainage cannulae only increased maximum circuit flow rates when combined with larger arterial cannulae. Conclusion Smaller cannulae and lower flow rates could sufficiently support the simulated patient under various disease states. We found arterial cannula size and SVR to be key factors in determining the flow-delivering capabilities for any given VA ECMO circuit. Overall, our results challenge the notion that larger cannulae and high flows must be used to achieve adequate ECMO support.