AP
Anja Palmans
Author with expertise in Self-Assembly and Biomaterial Design
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
701
h-index:
65
/
i10-index:
194
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visualizing the Heterogeneity in Homogeneous Supramolecular Polymers

Emmanouil Archontakis et al.Jul 10, 2024
The dynamic properties of supramolecular polymers enable new functionality beyond the limitations of conventional polymers. The mechanism of the monomer exchange between different supramolecular polymers is proposed to be closely associated with local disordered domains within the supramolecular polymers. However, a direct detection of such heterogeneity has never been experimentally probed. Here, we present the direct visualization of the local disordered domains in the backbone of supramolecular polymers by a super-resolution microscopy technique: Nile Red-based spectrally resolved point accumulation for imaging in nanoscale topography (NR-sPAINT). We investigate the local disordered domains in trisamide-based supramolecular polymers comprising a (co)assembly of benzene-1,3,5-tricarboxamide (BTA) and a variant with one of the amide bonds inverted (iBTA). The NR-sPAINT allows us to simultaneously map the spatial distribution and polarity of the local disordered domains along the polymers with a spatial precision down to ∼20 nm. Quantitative autocorrelation and cross-correlation analysis show subtle differences in the spatial distribution of the disordered domains between polymers composed of different variants of BTA monomers. Further, statistical analysis unraveled high heterogeneity in monomer packing at both intra- and interpolymer levels. The results reported here demonstrate the necessity of investigating the structures in soft materials at nanoscale to fully understand their intricacy.
0

Structure-Property Relationships to Direct the Dynamic Properties of Acylsemicarbazide-Based Materials

Stefan Maessen et al.Dec 4, 2024
Secondary interactions, such as hydrogen bonding or phase separation, can enhance the stability of dynamic covalent materials without compromising on desired dynamic properties. Here, we investigate the combination of multiple secondary interactions in dynamic covalent materials based on acylsemicarbazides (ASCs), with the aim of achieving tunable material properties. The effects of different ASC substituents on the dynamic covalent and hydrogen bonding capabilities were investigated in a small molecule study using a combined experimental and theoretical approach, and revealed the presence of cooperative hydrogen-bonding interactions in 2 directions in one of the derivatives. The different motifs were subsequently incorporated into polymeric materials. Combining ASC motifs capable of strong, multiple hydrogen bonding with a polydimethylsiloxane backbone introduces structure-dependent, ordered nanophase separation in polymeric materials. The thermo-mechanical properties of the materials reveal a strong dependance on the hydrogen-bonding structure and exact nature of the ASC bond. The dynamic behavior in bulk shows that bond exchange depends on the dissociation rate obtained from ASC model compounds, as well as the strength of the secondary interactions in these materials. Differences in hydrogen-bonding structures of the ASC motifs also cause differences in creep resistance of the materials. Interestingly, the materials with strong, ordered and cooperative hydrogen-bonded clusters show the highest creep resistance. Our results demonstrate that tuning both the dissociation rate and the secondary interactions by molecular design in dynamic covalent materials is important for controlling their thermal stability and creep resistance.