TB
Tégawendé Bissyandé
Author with expertise in Characterization and Detection of Android Malware
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
1,802
h-index:
46
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

IccTA: detecting inter-component privacy leaks in Android apps

Li Li et al.May 16, 2015
Shake Them All is a popular Wallpaper application exceeding millions of downloads on Google Play. At installation, this application is given permission to (1) access the Internet (for updating wallpapers) and (2) use the device microphone (to change background following noise changes). With these permissions, the application could silently record user conversations and upload them remotely. To give more confidence about how Shake Them All actually processes what it records, it is necessary to build a precise analysis tool that tracks the flow of any sensitive data from its source point to any sink, especially if those are in different components. Since Android applications may leak private data carelessly or maliciously, we propose IccTA, a static taint analyzer to detect privacy leaks among components in Android applications. IccTA goes beyond state-of-the-art approaches by supporting inter- component detection. By propagating context information among components, IccTA improves the precision of the analysis. IccTA outperforms existing tools on two benchmarks for ICC-leak detectors: DroidBench and ICC-Bench. Moreover, our approach detects 534 ICC leaks in 108 apps from MalGenome and 2,395 ICC leaks in 337 apps in a set of 15,000 Google Play apps.
0

IccTA: Detecting Inter-Component Privacy Leaks in Android Apps

Li Li et al.May 1, 2015
Shake Them All is a popular "Wallpaper" application exceeding millions of downloads on Google Play. At installation, this application is given permission to (1) access the Internet (for updating wallpapers) and (2) use the device microphone (to change background following noise changes). With these permissions, the application could silently record user conversations and upload them remotely. To give more confidence about how Shake Them All actually processes what it records, it is necessary to build a precise analysis tool that tracks the flow of any sensitive data from its source point to any sink, especially if those are in different components. Since Android applications may leak private data carelessly or maliciously, we propose IccTA, a static taint analyzer to detect privacy leaks among components in Android applications. IccTA goes beyond state-of-the-art approaches by supporting inter- component detection. By propagating context information among components, IccTA improves the precision of the analysis. IccTA outperforms existing tools on two benchmarks for ICC-leak detectors: DroidBench and ICC-Bench. Moreover, our approach detects 534 ICC leaks in 108 apps from MalGenome and 2,395 ICC leaks in 337 apps in a set of 15,000 Google Play apps.
0

Automated Testing of Android Apps: A Systematic Literature Review

Pingfan Kong et al.Sep 3, 2018
Automated testing of Android apps is essential for app users, app developers, and market maintainer communities alike. Given the widespread adoption of Android and the specificities of its development model, the literature has proposed various testing approaches for ensuring that not only functional requirements but also nonfunctional requirements are satisfied. In this paper, we aim at providing a clear overview of the state-of-the-art works around the topic of Android app testing, in an attempt to highlight the main trends, pinpoint the main methodologies applied, and enumerate the challenges faced by the Android testing approaches as well as the directions where the community effort is still needed. To this end, we conduct a systematic literature review during which we eventually identified 103 relevant research papers published in leading conferences and journals until 2016. Our thorough examination of the relevant literature has led to several findings and highlighted the challenges that Android testing researchers should strive to address in the future. After that, we further propose a few concrete research directions where testing approaches are needed to solve recurrent issues in app updates, continuous increases of app sizes, as well as the Android ecosystem fragmentation.
0
Paper
Citation190
0
Save
0

App review driven collaborative bug finding

Xunzhu Tang et al.Jul 26, 2024
Software development teams generally welcome any effort to expose bugs in their code base. In this work, we build on the hypothesis that mobile apps from the same category (e.g., two web browser apps) may be affected by similar bugs in their evolution process. It is therefore possible to transfer the experience of one historical app to quickly find bugs in its new counterparts. This has been referred to as collaborative bug finding in the literature. Our novelty is that we guide the bug finding process by considering that existing bugs have been hinted within app reviews. Concretely, we design the BugRMSys approach to recommend bug reports for a target app by matching historical bug reports from apps in the same category with user app reviews of the target app. We experimentally show that this approach enables us to quickly expose and report dozens of bugs for targeted apps such as Brave (web browser app). BugRMSys 's implementation relies on DistilBERT to produce natural language text embeddings. Our pipeline considers similarities between bug reports and app reviews to identify relevant bugs. We then focus on the app review as well as potential reproduction steps in the historical bug report (from a same-category app) to reproduce the bugs. Overall, after applying BugRMSys to six popular apps, we were able to identify, reproduce and report 20 new bugs: among these, 9 reports have been already triaged, 6 were confirmed, and 4 have been fixed by official development teams.
0

You Don’t Have to Say Where to Edit! jLED – Joint Learning to Localize and Edit Source Code

Weiguo Pian et al.Jan 13, 2025
Learning to edit code automatically is becoming more and more feasible. Thanks to recent advances in Neural Machine Translation (NMT), various case studies are being investigated where patches are automatically produced and assessed either automatically (using test suites) or by developers themselves. An appealing setting remains when the developer must provide a natural language input of the requirement for the code change. A recent proof of concept in the literature showed that it is indeed feasible to translate these natural language requirements into code changes. A recent advancement, MODIT [8], has shown promising results in code editing by leveraging natural language, code context, and location information as input. However, it struggles when location information is unavailable. While several studies [29, 81] have demonstrated the ability to edit source code without explicitly specifying the edit location, they still tend to generate edits with less accuracy at the line level. In this work, we address the challenge of generating code edits without precise location information, a scenario we consider crucial for the practical adoption of NMT in code development. To that end, we develop a novel joint training approach for both localization and source code editions. Building a benchmark based on over 70k commits (patches and messages), we demonstrate that our jLED ( j oint L ocalize and ED it) approach is effective. An ablation study further demonstrates the importance of our design choice in joint training.
0

Temporal-Incremental Learning for Android Malware Detection

Tiezhu Sun et al.Nov 5, 2024
Malware classification is a specific and refined task within the broader malware detection problem. Effective classification aids in understanding attack techniques and developing robust defenses, ensuring application security and timely mitigation of software vulnerabilities. The dynamic nature of malware demands adaptive classification techniques that can handle the continuous emergence of new families. Traditionally, this is done by retraining models on all historical samples, which requires significant resources in terms of time and storage. An alternative approach is Class-Incremental Learning (CIL), which focuses on progressively learning new classes (malware families) while preserving knowledge from previous training steps. However, CIL assumes that each class appears only once in training and is not revisited, an assumption that does not hold for malware families, which often persist across multiple time intervals. This leads to shifts in the data distribution for the same family over time, a challenge that is not addressed by traditional CIL methods. We formulate this problem as Temporal-Incremental Malware Learning (TIML), which adapts to these shifts and effectively classifies new variants. To support this, we organize the MalNet dataset, consisting of over a million entries of Android malware data collected over a decade, in chronological order. We first adapt state-of-the-art CIL approaches to meet TIML's requirements, serving as baseline methods. Then, we propose a novel multimodal TIML approach that leverages multiple malware modalities for improved performance. Extensive evaluations show that our TIML approaches outperform traditional CIL methods and demonstrate the feasibility of periodically updating malware classifiers at a low cost. This process is efficient and requires minimal storage and computational resources, with only a slight dip in performance compared to full retraining with historical data.
Load More