MS
M. Siegel
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
2,239
h-index:
47
/
i10-index:
105
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Relativistic jet activity from the tidal disruption of a star by a massive black hole

D. Burrows et al.Aug 1, 2011
Two groups report observations of the X-ray source Swift J164449.3+573451, which was discovered when it triggered the Swift Burst Alert Telescope on 28 March 2011. Burrows et al. report that the source has increased in brightness in the X-ray band more than 10,000-fold since 1990, and by more than 100-fold since early 2010. They conclude that we are observing the onset of relativistic jet activity from a supermassive black hole. Zauderer et al. arrive at a similar conclusion based on their observation of a radio transient associated with the source, and extensive monitoring at centimetre to millimetre wavelengths during the first month of its evolution. They estimate the mass of the black hole at around 106 solar masses. Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close1,2, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole3,4,5,6,7. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies8,9,10,11,12,13,14, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper15 comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.
0

THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. IX. HORIZONTAL BRANCH MORPHOLOGY AND THE SECOND PARAMETER PHENOMENON

Aaron Dotter et al.Dec 15, 2009
The horizontal branch (HB) morphology of globular clusters (GCs) is most strongly influenced by metallicity. The second parameter phenomenon, first described in the 1960s, acknowledges that metallicity alone is not enough to describe the HB morphology of all GCs. In particular, astronomers noticed that the outer Galactic halo contains GCs with redder HBs at a given metallicity than are found inside the solar circle. Thus, at least a second parameter was required to characterize HB morphology. While the term "second parameter" has since come to be used in a broader context, its identity with respect to the original problem has not been conclusively determined. Here we analyze the median color difference between the HB and the red giant branch, hereafter denoted as Δ(V − I), measured from Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) photometry of 60 GCs within ∼20 kpc of the Galactic center. Analysis of this homogeneous data set reveals that, after the influence of metallicity has been removed from the data, the correlation between Δ(V − I) and age is stronger than that of any other parameter considered. Expanding the sample to include HST ACS and Wide Field Planetary Camera 2 photometry of the six most distant Galactic GCs lends additional support to the correlation between Δ(V − I) and age. This result is robust with respect to the adopted metallicity scale and the method of age determination, but must bear the caveat that high-quality, detailed abundance information is not available for a significant fraction of the sample. Furthermore, when a subset of GCs with similar metallicities and ages is considered, a correlation between Δ(V − I) and central luminosity density is exposed. With respect to the existence of GCs with anomalously red HBs at a given metallicity, we conclude that age is the second parameter and central density is most likely the third. Important problems related to HB morphology in GCs, notably multi-modal distributions and faint blue tails, remain to be explained.
0

Spectroscopic Survey of Faint Planetary-nebula Nuclei. V. The EGB 6-type Central Star of Abell 57*

Howard Bond et al.Jul 29, 2024
Abstract During our spectroscopic survey of central stars of faint planetary nebulae (PNe), we found that the nucleus of Abell 57 exhibits strong nebular emission lines. Using synthetic narrowband images, we show that the emission arises from an unresolved compact emission knot (CEK) coinciding with the hot (90,000 K) central star. Thus Abell 57 belongs to the rare class of “EGB 6-type” PNe, characterized by dense emission cores. Photometric data show that the nucleus exhibits a near-infrared excess, due to a dusty companion body with the luminosity of an M0 dwarf but a temperature of ∼1800 K. Emission-line analysis reveals that the CEK is remarkably dense (electron density ∼ 1.6 × 10 7 cm −3 ), and has a radius of only ∼4.5 au. The CEK suffers considerably more reddening than the central star, which itself is more reddened than the surrounding PN. These puzzles may suggest an interaction between the knot and central star; however, Hubble Space Telescope imaging of EGB 6 itself shows that its CEK lies more than ∼125 au from the PN nucleus. We discuss a scenario in which a portion of the asymptotic giant branch wind that created the PN was captured into a dust cloud around a distant stellar companion; this cloud has survived to the present epoch, and has an atmosphere photoionized by radiation from the hot central star. However, in this picture EGB 6-type nuclei should be relatively common, yet they are actually extremely rare; thus they may arise from a different transitory phenomenon. We suggest future observations of Abell 57 that may help unravel its mysteries.