AD
Arkaprava Das
Author with expertise in Hadron Physics and QCD
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
4
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exclusive J/ψ, ψ(2s) , and e+e−

V. Luong et al.Jul 31, 2024
Measurements of exclusive $J/\ensuremath{\psi}, \ensuremath{\psi}(2s)$, and electron-positron (${e}^{+}{e}^{\ensuremath{-}}$) pair photoproduction in $\mathrm{Au}+\mathrm{Au}$ ultraperipheral collisions are reported by the STAR experiment at $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200\phantom{\rule{4pt}{0ex}}\mathrm{GeV}$. We report several first measurements at the BNL Relativistic Heavy Ion Collider, which are (i) $J/\ensuremath{\psi}$ photoproduction with large momentum transfer up to ${2.2\phantom{\rule{4pt}{0ex}}(\mathrm{GeV}/c)}^{2}$, (ii) coherent $J/\ensuremath{\psi}$ photoproduction associated with neutron emissions from nuclear breakup, (iii) the rapidity dependence of incoherent $J/\ensuremath{\psi}$ photoproduction, (iv) the $\ensuremath{\psi}(2s)$ photoproduction cross section at midrapidity, and (v) ${e}^{+}{e}^{\ensuremath{-}}$ pair photoproduction up to high invariant mass of $6\phantom{\rule{4pt}{0ex}}\mathrm{GeV}/{c}^{2}$. For measurement (ii), the coherent $J/\ensuremath{\psi}$ total cross section of $\ensuremath{\gamma}+\mathrm{Au}\ensuremath{\rightarrow}\mathrm{J}/\ensuremath{\psi}+\mathrm{Au}$ as a function of the center-of-mass energy ${W}_{\ensuremath{\gamma}N}$ has been obtained without photon energy ambiguities. The data are quantitatively compared with the Monte Carlo models STARlight, Sartre, BeAGLE, and theoretical calculations of gluon saturation with color glass condensate, nuclear shadowing with leading twist approximation, quantum electrodynamics, and the next-to-leading-order perturbative QCD. At the photon-nucleon center-of-mass energy of 25.0 GeV, the coherent and incoherent $J/\ensuremath{\psi}$ cross sections of Au nuclei are found to be $71%\ifmmode\pm\else\textpm\fi{}10%$ and $36%\ifmmode\pm\else\textpm\fi{}7%$, respectively, of that of free protons. These data provide an important experimental constraint for nuclear parton distribution functions and a unique opportunity to advance the understanding of the nuclear modification effect at the top RHIC energy.
0
Paper
Citation2
0
Save
0

Imaging shapes of atomic nuclei in high-energy nuclear collisions

M. Abdulhamid et al.Nov 6, 2024
Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes 1–3 , traditionally explored using non-invasive spectroscopic techniques at low energies 4,5 . However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors 6,7 . We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.