JG
Julie Grollier
Author with expertise in Memristive Devices for Neuromorphic Computing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(75% Open Access)
Cited by:
8,121
h-index:
54
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Neuromorphic computing with nanoscale spintronic oscillators

Jacob Torrejón et al.Jul 1, 2017
Spoken-digit recognition using a nanoscale spintronic oscillator that mimics the behaviour of neurons demonstrates the potential of such oscillators for realizing large-scale neural networks in future hardware. Neuromorphic computing takes the exceptional information processing capabilities of the biological brain as inspiration and attempts to build artificial neurons, synapses and networks for tackling specific tasks that are challenging or energy-intensive for regular computers, such as recognizing images and patterns in sensory signals. Julie Grollier and colleagues use magnetic nanoscale oscillators to mimic the nonlinear oscillating behaviour of neurons and test the capability of such devices to recognize audio signals. The system was trained to recognize spoken digits from five different voices from a benchmark database and could do so with accuracy comparable to state-of-the-art machine learning. The work opens a new direction for chip-based, low-power, brain-like information processing. Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information1. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 108 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals2,3,4,5 and several candidates, including memristive6 and superconducting7 oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction)8,9 can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.
0

Neuromorphic spintronics

Julie Grollier et al.Mar 2, 2020
Neuromorphic computing uses brain-inspired principles to design circuits that can perform computational tasks with superior power efficiency to conventional computers. Approaches that use traditional electronic devices to create artificial neurons and synapses are, however, currently limited by the energy and area requirements of these components. Spintronic nanodevices, which exploit both the magnetic and electrical properties of electrons, can increase the energy efficiency and decrease the area of these circuits, and magnetic tunnel junctions are of particular interest as neuromorphic computing elements because they are compatible with standard integrated circuits and can support multiple functionalities. Here, we review the development of spintronic devices for neuromorphic computing. We examine how magnetic tunnel junctions can serve as synapses and neurons, and how magnetic textures, such as domain walls and skyrmions, can function as neurons. We also explore spintronics-based implementations of neuromorphic computing tasks, such as pattern recognition in an associative memory, and discuss the challenges that exist in scaling up these systems. This Review Article examines the development of spintronic devices for neuromorphic computing, exploring how magnetic tunnel junctions and magnetic textures can act as artificial neurons and synapses, as well as considering the challenges that exist in scaling up current systems.
0

Spintronic Nanodevices for Bioinspired Computing

Julie Grollier et al.Sep 8, 2016
Bioinspired hardware holds the promise of low-energy, intelligent, and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for biomedical prosthesis. However, one of the major challenges of fabricating bioinspired hardware is building ultra-high-density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions (MTJs) are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bioinspired computing include tunable fast nonlinear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nanodevices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bioinspired architectures that include one or several types of spintronic nanodevices. In this paper, we show how spintronics can be used for bioinspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges toward fully integrated spintronics complementary metal-oxide-semiconductor (CMOS) bioinspired hardware.
Load More