This study evaluated the effect of solvent acids on the structure and corrosion resistance performance of chitosan (CS) film on MAO-treated AZ31B magnesium (Mg) alloy. Initially, CS solutions were prepared in four solvent acids: acetic acid (HAc), lactic acid (LA), hydrochloric acid (HCl), and citric acid (CA). The CS films were subsequently deposited on MAO-treated AZ31B Mg alloy via a dip-coating technique. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), contact angle measurement, and atomic force microscopy (AFM) were employed to characterize the surface and cross-sectional morphology as well as chemical composition. Furthermore, the samples were subjected to potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests to assess their resistance against corrosion in simulated body fluid (SBF). These results indicated that the CS film prepared with LA exhibited the lowest surface roughness (R