MR
M. Razzano
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(100% Open Access)
Cited by:
4,966
h-index:
150
/
i10-index:
417
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger

E. Pian et al.Oct 16, 2017
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of gamma-rays, a gravitational wave signal, and a transient optical/near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named "macronovae" or "kilonovae", are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short gamma-ray burst at z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational wave source GW 170817 and gamma-ray burst GRB 170817A associated with a galaxy at a distance of 40 Mpc from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03-0.05 solar masses of material, including high-opacity lanthanides.
0

Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

M. Ackermann et al.Feb 11, 2014
The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via $\ensuremath{\gamma}$ rays. Here we report on $\ensuremath{\gamma}$-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in $\ensuremath{\gamma}$ rays, and we present $\ensuremath{\gamma}$-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse $\ensuremath{\gamma}$-ray background modeling, and assumed dark matter density profile.
0

THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

M. Ackermann et al.Oct 12, 2012
The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy \gamma-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the Instrument Response Functions (IRFs), the description of the instrument performance provided for data analysis. In this paper we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.
0

FERMI-LAT OBSERVATIONS OF HIGH-ENERGY γ-RAY EMISSION TOWARD THE GALACTIC CENTER

M. Ajello et al.Feb 26, 2016
The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission towards the Galactic centre (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a $15^\circ \times 15^\circ$ region about the direction of the GC, and implications for the interstellar emissions produced by cosmic ray (CR) particles interacting with the gas and radiation fields in the inner Galaxy and for the point sources detected. Specialised interstellar emission models (IEMs) are constructed that enable separation of the gamma-ray emission from the inner $\sim 1$ kpc about the GC from the fore- and background emission from the Galaxy. Based on these models, the interstellar emission from CR electrons interacting with the interstellar radiation field via the inverse Compton (IC) process and CR nuclei inelastically scattering off the gas producing gamma-rays via $\pi^0$ decays from the inner $\sim 1$ kpc is determined. The IC contribution is found to be dominant in the region and strongly enhanced compared to previous studies. A catalog of point sources for the $15^\circ \times 15^\circ$ region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy point source Catalog (1FIG). After subtracting the interstellar emission and point-source contributions from the data a residual is found that is a sub-dominant fraction of the total flux. If spatial templates that peak toward the GC are used to model the positive residual and included in the total model for the $15^\circ \times 15^\circ$ region, the agreement with the data improves, but none of the additional templates account for all of the residual structure. The spectrum of the positive residual modelled with these templates has a strong dependence on the choice of IEM. [Abridged]
0

MINUTE-TIMESCALE >100 MeV γ-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE

M. Ackermann et al.Jun 14, 2016
On 2015 June 16, Fermi-LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak $>100$ MeV flux of $\sim3.6\times10^{-5}\;{\rm photons}\;{\rm cm}^{-2}\;{\rm s}^{-1}$ averaged over orbital period intervals. It is the historically highest $\gamma$-ray flux observed from the source including past EGRET observations, with the $\gamma$-ray isotropic luminosity reaching $\sim10^{49}\;{\rm erg}\;{\rm s}^{-1}$. During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 min, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT. The source flux variability was resolved down to 2-min binned timescales, with flux doubling times less than 5 min. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor ($\Gamma$) of 35 is necessary to avoid both internal $\gamma$-ray absorption and super-Eddington jet power. In the standard external-radiation-Comptonization scenario, $\Gamma$ should be at least 50 to avoid overproducing the synchrotron-self-Compton component. However, this predicts extremely low magnetization ($\sim5\times10^{-4}$). Equipartition requires $\Gamma$ as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider $\gamma$ rays originating as synchrotron radiation of $\gamma_{\rm e}\sim1.6\times10^6$ electrons, in magnetic field $B\sim1.3$ kG, accelerated by strong electric fields $E\sim B$ in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude production of $\gamma$ rays in hadronic processes.
Load More