Free AccessCPAPRules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated EventsDeliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine Richard B. Berry, M.D., F.A.A.S.M., Rohit Budhiraja, M.D., F.A.A.S.M., Daniel J. Gottlieb, M.D., F.A.A.S.M., David Gozal, M.D., F.A.A.S.M., Conrad Iber, M.D., Vishesh K. Kapur, M.D., M.P.H., F.A.A.S.M., Carole L. Marcus, MB.BCh., F.A.A.S.M., Reena Mehra, M.D., M.S., F.A.A.S.M., Sairam Parthasarathy, M.D., F.A.A.S.M., Stuart F. Quan, M.D., F.A.A.S.M., Susan Redline, M.D., M.P.H., Kingman P. Strohl, M.D., F.A.A.S.M., Sally L. Davidson Ward, M.D., Michelle M. Tangredi, Ph.D. Richard B. Berry, M.D., F.A.A.S.M. Address correspondence to: Richard B. Berry, Division of Pulmonary Medicine, University of Florida Health Science Center, PO Box 100225, Gainesville, FL 32610(352) 376-1611(352) 379-4155 E-mail Address: [email protected] University of Florida, Gainesville, FL Search for more papers by this author , Rohit Budhiraja, M.D., F.A.A.S.M. Southern Arizona VA Healthcare System, Tucson, AZ Search for more papers by this author , Daniel J. Gottlieb, M.D., F.A.A.S.M. VA Boston Healthcare System, Boston, MA Search for more papers by this author , David Gozal, M.D., F.A.A.S.M. Department of Pediatrics, University of Chicago, Chicago, IL Search for more papers by this author , Conrad Iber, M.D. University of Minnesota, Minneapolis, MN Search for more papers by this author , Vishesh K. Kapur, M.D., M.P.H., F.A.A.S.M. Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA Search for more papers by this author , Carole L. Marcus, MB.BCh., F.A.A.S.M. Children's Hospital of Philadelphia, Philadelphia, PA Search for more papers by this author , Reena Mehra, M.D., M.S., F.A.A.S.M. Case Western University, Cleveland, OH Search for more papers by this author , Sairam Parthasarathy, M.D., F.A.A.S.M. University of Arizona, Tucson, AZ Search for more papers by this author , Stuart F. Quan, M.D., F.A.A.S.M. Harvard Medical School, Boston, MA Search for more papers by this author , Susan Redline, M.D., M.P.H. Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA Search for more papers by this author , Kingman P. Strohl, M.D., F.A.A.S.M. Case Western University, Cleveland, OH Search for more papers by this author , Sally L. Davidson Ward, M.D. Division of Pediatric Pulmonology, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California Search for more papers by this author , Michelle M. Tangredi, Ph.D. American Academy of Sleep Medicine, Darien, IL Search for more papers by this author Published Online:October 15, 2012https://doi.org/10.5664/jcsm.2172Cited by:3048SectionsAbstractPDF ShareShare onFacebookTwitterLinkedInRedditEmail ToolsAdd to favoritesDownload CitationsTrack Citations AboutABSTRACTThe American Academy of Sleep Medicine (AASM) Sleep Apnea Definitions Task Force reviewed the current rules for scoring respiratory events in the 2007 AASM Manual for the Scoring and Sleep and Associated Events to determine if revision was indicated. The goals of the task force were (1) to clarify and simplify the current scoring rules, (2) to review evidence for new monitoring technologies relevant to the scoring rules, and (3) to strive for greater concordance between adult and pediatric rules. The task force reviewed the evidence cited by the AASM systematic review of the reliability and validity of scoring respiratory events published in 2007 and relevant studies that have appeared in the literature since that publication. Given the limitations of the published evidence, a consensus process was used to formulate the majority of the task force recommendations concerning revisions.The task force made recommendations concerning recommended and alternative sensors for the detection of apnea and hypopnea to be used during diagnostic and positive airway pressure (PAP) titration polysomnography. An alternative sensor is used if the recommended sensor fails or the signal is inaccurate. The PAP device flow signal is the recommended sensor for the detection of apnea, hypopnea, and respiratory effort related arousals (RERAs) during PAP titration studies. Appropriate filter settings for recording (display) of the nasal pressure signal to facilitate visualization of inspiratory flattening are also specified. The respiratory inductance plethysmography (RIP) signals to be used as alternative sensors for apnea and hypopnea detection are specified. The task force reached consensus on use of the same sensors for adult and pediatric patients except for the following: (1) the end-tidal PCO2 signal can be used as an alternative sensor for apnea detection in children only, and (2) polyvinylidene fluoride (PVDF) belts can be used to monitor respiratory effort (thoracoabdominal belts) and as an alternative sensor for detection of apnea and hypopnea (PVDFsum) only in adults.The task force recommends the following changes to the 2007 respiratory scoring rules. Apnea in adults is scored when there is a drop in the peak signal excursion by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative apnea sensor, for ≥ 10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ 10 seconds in association with either ≥ 3% arterial oxygen desaturation or an arousal. Scoring a hypopnea as either obstructive or central is now listed as optional, and the recommended scoring rules are presented. In children an apnea is scored when peak signal excursions drop by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative sensor; and the event meets duration and respiratory effort criteria for an obstructive, mixed, or central apnea. A central apnea is scored in children when the event meets criteria for an apnea, there is an absence of inspiratory effort throughout the event, and at least one of the following is met: (1) the event is ≥ 20 seconds in duration, (2) the event is associated with an arousal or ≥ 3% oxygen desaturation, (3) (infants under 1 year of age only) the event is associated with a decrease in heart rate to less than 50 beats per minute for at least 5 seconds or less than 60 beats per minute for 15 seconds. A hypopnea is scored in children when the peak signal excursions drop is ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ the duration of 2 breaths in association with either ≥ 3% oxygen desaturation or an arousal. In children and adults, surrogates of the arterial PCO2 are the end-tidal PCO2 or transcutaneous PCO2 (diagnostic study) or transcutaneous PCO2 (titration study). For adults, sleep hypoventilation is scored when the arterial PCO2 (or surrogate) is > 55 mm Hg for ≥ 10 minutes or there is an increase in the arterial PCO2 (or surrogate) ≥ 10 mm Hg (in comparison to an awake supine value) to a value exceeding 50 mm Hg for ≥ 10 minutes. For pediatric patients hypoventilation is scored when the arterial PCO2 (or surrogate) is > 50 mm Hg for > 25% of total sleep time. In adults Cheyne-Stokes breathing is scored when both of the following are met: (1) there are episodes of ≥ 3 consecutive central apneas and/or central hypopneas separated by a crescendo and decrescendo change in breathing amplitude with a cycle length of at least 40 seconds (typically 45 to 90 seconds), and (2) there are five or more central apneas and/or central hypopneas per hour associated with the crescendo/decrescendo breathing pattern recorded over a minimum of 2 hours of monitoring.Commentary:A commentary on this article appears in this issue on page 621.Citation:Berry RB; Budhiraja R; Gottlieb DJ; Gozal D; Iber C; Kapur VK; Marcus CL; Mehra R; Parthasarathy S; Quan SF; Redline S; Strohl KP; Ward SLD; Tangredi MM. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J Clin Sleep Med 2012;8(5):597-619.1.0 INTRODUCTIONIn 2007 the American Academy of Sleep Medicine (AASM) published rules for scoring respiratory events in the AASM Manual for the Scoring of Sleep and Associated Events, 1st ed.1 (hereafter referred to as the 2007 scoring manual). Widespread use of the rules has resulted in questions about rule interpretation and application. The 2007 scoring manual steering committee has addressed a number of questions concerning the respiratory rules on the scoring manual frequently asked questions (FAQs) page of the AASM website. Since 2007 several publications have addressed the impact of the respiratory scoring rules on the diagnosis of obstructive sleep apnea in children and adults.2–5 Additional publications concerning the technology of respiratory monitoring have also appeared.6,7 Given these developments, the Board of Directors of the AASM considered the need for reappraisal of the scoring rules almost five years after publication. The Board of Directions subsequently appointed the Sleep Apnea Definitions Task Force (hereafter referred to as the task force) to consider possible revisions to the scoring rules and to make recommendations concerning changes.2.0 METHODSThe task force consisted of nine of the original thirteen individuals who authored the review8 of the evidence used to develop the 2007 respiratory scoring rules and four additional individuals with clinical experience in the application of the respiratory scoring rules. The task force met by conference call on several occasions and once face to face. The goals of the task force were: (1) to clarify and simplify the respiratory scoring rules, (2) to review evidence for new monitoring technologies relevant to the scoring rules, and (3) to strive for greater concordance between adult and pediatric rules. It is hoped that the discussion in this publication will prove useful in the clinical realm and stimulate further research concerning the existing knowledge gaps for which more evidence is needed.The task force reviewed the 1999 sleep related breathing disorders in adults consensus publication,9 the comprehensive scoring of respiratory events review that provided evidence for the 2007 scoring manual,8 and the International Classification of Sleep Disorders, 2nd edition.10 A PubMed search for relevant articles published since 2005 was performed. The following terms were paired with numerous terms for respiratory events and relevant technology: scoring, interpretation, definition, validity, reliability, precision, measurement. Additional articles were pearled from relevant evidence papers.The strength of evidence for the task force recommendations includes (standard), (guideline), (consensus), or (adjudication).11 Standard recommendations are based on level 1 evidence or overwhelming level 2 evidence. Guideline recommendations are based on level 2 evidence or consensus of level 3 evidence. Consensus recommendations are based on consensus of the task force. Adjudication reflects consensus of the AASM Board of Directors when the task force was unable to make a recommendation. When there was an absence of high-level evidence,11 recommendations were based on consensus. A modified RAND consensus process12 was followed. The task force drafted respiratory definitions ballot items with a wide spectrum of possible definitions including the 2007 definitions. After initial voting on definitions, there was discussion and editing of items that failed to reach consensus. Voting and editing of definitions continued until a consensus was reached. All task force members disclosed potential conflicts of interest. Individual members abstained from voting on ballot questions concerning technology when there was a question of a potential conflict of interest based on prior research funding. The Board of Directors of the AASM reviewed the recommendations of the task force and requested clarification or suggested reappraisal of certain respiratory rules based on recent publications. Following further voting and editing, the Board of Directors approved a set of revised respiratory rules.Although proposed revisions to the rules are shown here at the conclusion of each section to make the discussion more understandable, the final and complete set of rules can be found in the online AASM Manual for the Scoring of Sleep and Associated Events, Version 2.0, which is a web-based document, amenable to updates as new literature emerges. This manuscript reviews the issues confronted by the task force during their review as well as the rationale behind the revisions. In the 2007 scoring manual, the levels of recommendation were: Recommended, Alternative, Optional. In this document the level “Alternative” is changed to “Acceptable” to correspond with terminology in the new scoring manual (Version 2.0) (Table 1). In the 2007 scoring manual, sensors were specified (recommended) for detection of apnea, hypopnea, and respiratory effort. Alternative sensors were specified for use if the recommended sensor failed or was not accurate. This terminology will be continued in this document (Table 1).Table 1 Levels of recommendation and sensor classificationTable 1 Levels of recommendation and sensor classification3.0 RECOMMENDATIONS FOR ADULT AND PEDIATRIC PATIENTS3.1 Technical Considerations for Adult and Pediatric PatientsIn considering the definitions of respiratory events, the task force recognized that most of the 2007 scoring manual definitions include a recommendation for the sensors to be used for event detection. While the major focus of the task force was to update the definitions of respiratory events, it was also necessary to consider sensor technology as it relates to event definitions. It must be recognized that the information obtained from any sensor depends critically on the proper placement of the sensor and appropriate adjustment of gain and filters for viewing the signal. To be accurate, some sensors may require calibration procedures. Filter settings were recommended for most signals of interest in the 2007 AASM scoring manual.1 It is also important to consider that validation of a sensor type manufactured by one company may not invariably generalize to other brands of the same type of sensor.3.1.1 Detection of Apnea and Hypopnea—General ConsiderationsThe task force recommends a few changes and clarifications in the technical considerations section of the respiratory scoring rules chapter (Tables 2, 3, and 4). The 2007 scoring manual did not specify the sensor for detection of apnea and hypopnea during positive airway pressure (PAP) titration. PAP devices used for titration during polysomnography (PSG) have the ability to output an analog or digital signal from the internal flow sensor.13 Use of this signal to detect apnea and hypopnea during PAP titration is recommended in both the positive airway pressure and noninvasive positive pressure ventilation (NPPV) titration clinical guidelines.14,15 Flattening of the inspiratory portion of the flow waveform provides evidence of airflow limitation and increased upper airway resistance.13,16 Based on consensus and clinical evidence, the task force recommends that the PAP device flow signal should be used to score apneas or hypopneas during PAP titration. Of note, the magnitude of oral airflow, if present, during a PAP titration with a nasal mask is not estimated by the PAP flow signal.Table 2 Recommended sensors for routine respiratory monitoringTable 2 Recommended sensors for routine respiratory monitoringTable 3 Alternative sensors for scoring respiratory events during diagnostic studyTable 3 Alternative sensors for scoring respiratory events during diagnostic studyTable 4 Other sensors for respiratory monitoringTable 4 Other sensors for respiratory monitoringWhile the 2007 scoring manual lists the use of respiratory inductance (inductive) plethysmography (RIP) sensors17–19 as alternative sensors for scoring apnea and hypopnea, the specific RIP signals to be used were not clearly specified. The available RIP signals include the dual RIP belt signals (thorax and abdomen), the RIPsum (sum of the thorax and abdomen belt signals) and the RIPflow (the time derivative of the RIPsum signal).18–20 Deflections in the RIPsum signal provide an estimate of tidal volume when RIP is calibrated.18,19,21 In uncalibrated RIP, deflections in the RIPsum signal allow detection of a relative change in tidal volume compared to baseline breathing.9,19,22 If the RIPsum signal is not available, a reduction in tidal volume can be inferred if there is a reduction in the excursions of the thoracic and abdominal belts.9,22 Of note, the pattern of undiminished excursions in the signals from the thoracoabdominal belts that are out of phase during an event is also consistent with a reduction in tidal volume (RIPsum). The RIPflow signal is a semi-quantitative estimate of airflow in calibrated RIP, and relative airflow in uncalibrated RIP.19,20,23–25 Calibration of the RIP signal is usually not performed in routine clinical PSG unless the technology for calibration during natural breathing26 is available. During apnea, the RIPsum and RIPflow signals show absent or minimal excursions, and during hypopnea, the excursions are diminished compared to baseline breathing.18,19 Of note, airflow limitation can be inferred from subtle qualitative changes in the inspiratory portion of the thorax RIP, abdominal RIP, and RIPsum signals,27 or from flattening of the inspiratory portion of the RIPflow waveform.19,20,28 The recommended RIP signals for scoring apnea and hypopnea events are specified in Tables 2 and 3.The 2007 scoring manual recommends use of the nasal pressure signal for scoring hypopnea in both adults and children. While the detection of hypopnea depends on the reduction in the amplitude of the signal, the inspiratory portion of the nasal pressure waveform provides additional useful information. Flattening of the shape of the inspiratory nasal pressure waveform is a surrogate for airflow limitation19,24,29–31 and is included in the respiratory effort related arousal (RERA) rules in the 2007 scoring manual.1 Visualization of flattening of the signal requires that the nasal pressure signal be recorded either as a DC signal or an AC signal with a low-frequency filter setting (cutoff frequency) that is sufficiently low (frequency cutoff 0.03 Hz or lower) (Figure 1).30 Snoring can also be detected as oscillations superimposed on the unfiltered nasal pressure signal32 if an appropriate high-frequency filter setting is used (100 Hz).1 The task force recommends that appropriate high and low filters settings be specified for nasal pressure recording in future revisions of the scoring manual.Figure 1: Nasal pressure signal displayed as a DC signal and as an AC signal with various low frequency filter settings (Hz)The direction of inspiration is upward. At a low filter setting of 0.1 Hz, the ability to demonstrate airflow flattening is impaired.Download Figure3.1.2 Sensors for Apnea DetectionIn the 2007 scoring manual the recommended sensor for detecting apnea in both adults and children is an oronasal thermal sensor (Table 1 for definition of recommended). Oronasal thermal sensors have the advantage of being able to detect both nasal and oral airflow. Thermal sensors detect a change in temperature between inhaled and exhaled gas. Here thermal airflow sensors include thermistors, thermocouples, or polyvinylidene fluoride (PVDF) sensors.19,33–35 The task force found no evidence to change this recommendation for diagnostic sleep studies, although it broadened the definition of thermal sensors to include PVDF sensors.The 2007 scoring manual recommends somewhat different alternative sensors for apnea detection in adults (nasal pressure transducer or RIP) and children (nasal pressure transducer, end-tidal PCO2, and summed RIP) (Table 1 for definition of alternative). The nasal pressure signal is not the recommended sensor for apnea detection as the signal may show decrease excursions (decreased amplitude) during mouth breathing.32 Due to the non-linear characteristics of the nasal pressure signal (proportional to the flow squared), the signal underestimates low flow rates and could result in a hypopnea appearing to be an apnea.36 A square root transformation of the nasal pressure signal more closely approximates flow and minimizes this problem.As noted above, the excursions of the RIPsum and RIPflow signals usually have minimal amplitude during apnea.18,19,23 However, during obstructive apnea continued excursions in the RIPsum or RIPflow signals may be seen if the thorax and abdominal belt signals do not precisely sum to zero. This problem is minimized by calibration of the RIP signals; however, even the calibrated RIPsum may not remain accurate due to belt movement or changes in patient position.37Studies have evaluated the accuracy of RIPsum or RIPflow as a surrogate of tidal volume/airflow to detect apneas and hypopneas in adults23,38 and children.25 These studies usually analyzed the combination of apneas and hypopneas.23,38 That is, a separate analysis for apneas and hypopneas was not performed. In one study of calibrated RIP, the use of the RIPsum and RIPflow signals to determine the apnea hypopnea index (AHI) showed good agreement with a pneumotachograph (accurate flowmeter).23 Another study using uncalibrated RIP to determine the AHI found the intermeasurement agreement between use of the RIPsum and pneumotachograph to be considerably lower than between nasal pressure and pneumotachograph.38 A separate analysis for apnea and hypopnea detection was not performed. Respiratory belts utilizing a PVDF sensor can also provide a sum signal as well as thoracoabdominal signals. One study in adult patients being evaluated for suspected obstructive sleep apnea (OSA) suggests that the PVDFsum signal may have utility as a method for apnea/hypopnea detection independent of direct airflow monitoring (nasal pressure or thermistry).6 The PVDFsum signal identified apnea based on a reduction in signal amplitude to 10% of baseline and hypopnea by a 50% reduction in signal. There was good agreement between classification of patients with an AHI ≥ 5/hour using PVDFsum compared to detection of airflow by thermistry and nasal pressure. In a separate part of the study, ten normal subjects simulated central and obstructive apneas while monitored with a pneumotachograph, RIP belts, and PVDF belts. Respiratory events defined as > 50% drop in signal amplitude were identified and compared. The PVDF sensor performed as well as the RIP when compared against the pneumotachograph in terms of the total number of respiratory events that were detected. Further evidence for the utility of the PVDF signals (thoracoabdominal belts or sum) to detect apnea/hypopnea is needed.In summary, there is evidence that RIPflow or RIPsum (in adults and children) or PVDFsum (in adults only) may be used as an alternative sensor for apnea detection with the understanding that most studies analyzed the combination of apneas and hypopneas. Calibration of RIP may improve the accuracy of RIPflow and RIPsum, but a head-to-head comparison of AHI results using the same sensor, with and without calibration, has not been performed. Further comparisons between PVDFsum, RIPsum, or RIPflow, and an oronasal thermal sensor for detection of apneas (both central and obstructive) are needed.The end-tidal PCO2 signal is listed as an alternative sensor for apnea detection in pediatric patients in the 2007 scoring manual. A more accurate description of the signal is exhaled PCO2, but the phrase end-tidal PCO2 monitoring is widely used. Monitoring of exhaled PCO2 is routinely performed during pediatric PSG, and the absence of signal deflections (no CO2 exhaled) has been used to score apneas (Figure 2).1,39 The side stream method is most commonly used and consists of gas suctioned via a nasal cannula to an external sensor at bedside. Mouth breathing and occlusion of the nasal cannula can impair the ability of end-tidal PCO2 monitoring to detect apnea. One must remember that the magnitude of signal excursion depends entirely on the highest value of PCO2 in the exhaled breath rather than the magnitude of tidal volume or flow. Signal excursions can persist during inspiratory apnea if small expiratory puffs with a high PCO2 are present.40 A large study in infants compared the ability of the RIPsum, end-tidal PCO2, and oronasal thermistor monitoring to detect apnea.39 End-tidal PCO2 detected 182 of 196 apneas detected by either a thermistor or RIPsum.Figure 2: Use of the CO2 waveform to detect apneaHere RIPsum, RIPthorax, RIPabdomen are the summed, thorax, and abdominal signals from respiratory inductance plethysmography. The exhaled PCO2 is the capnography signal. The presence of apnea is documented by (A) oronasal thermal flow and (B) capnography. Note that the capnography signal lags behind the flow signal. The event depicted is an obstructive apnea. Thoracoabdominal paradox (D) is noted during the event but not during unobstructed breathing (C).Download FigureAfter review of the existing evidence, the task force decided upon recommended (Table 2) and alternative (Table 3) sensors for apnea detection. The task force concluded that the recommended sensor for apnea detection during diagnostic study should continue to be an oronasal thermal sensor in adults and children [Recommended] (Consensus). The task force also reached consensus on specification of the nasal pressure signal or the RIPsum or RIPflow signals from calibrated or uncalibrated RIP as the alternative (sensor) signals for apnea detection during diagnostic study in adults and children [Recommended] (Consensus). In adults the PVDFsum signal may also be used as an alternative sensor for apnea detection, although the ability to differentiate obstructive apneas versus hypopneas has not been defined [Acceptable] (Adjudication). The end-tidal PCO2 is another alternative apnea sensor in children if other sensors are not functioning or not available [Acceptable] (Consensus). As noted in the previous section, the PAP device flow signal is the recommended signal for apnea detection during PAP titration. Alternative sensors for apnea detection during PAP titration studies are not specified.3.1.3 Sensors for Hypopnea DetectionHypopnea detection requires a sensor to reliably detect a reduction in airflow or tidal volume. The gold standard for airflow detection is a pneumotachograph, usually placed in the outlet of a mask over the nose and mouth, which measures the pressure drop across a linear resistance.9,19,23,24,40 However, this technology is not practical for clinical studies. The 2007 scoring manual recommends a nasal pressure transducer with or without square root transformation as the recommended sensor for detection of airflow for identification of hypopnea in adults.1 In children the untransformed nasal pressure signal is recommended. The 2007 scoring manual also recommends somewhat different alternative hypopnea sensors for adults (calibrated or uncalibrated RIP, oronasal thermal sensor) and children (oronasal thermal sensor).As noted above, nasal pressure monitoring (nasal cannula connected to a pressure transducer) provides a signal proportional to the square of the flow.36 A square root transformation of the signal provides a more accurate estimate of flow, but the accuracy of the transformed nasal pressure signal typically deteriorates over a night of monitoring due to factors such as changes in catheter position.23 The effect of using a transformed rather than untransformed nasal pressure signal on the apnea hypopnea index is usually small; the AHI based on the transformed signal is slightly lower.1,23 The utility of nasal pressure monitoring has been documented in a significant number of publications19,23–25,29–32 and is sensitive to even subtle changes in airflow. The inspiratory portion of the nasal pressure waveform can display flattening, a surrogate of airflow limitation when using appropriate filter settings. As noted above, the major disadvantage of nasal pressure monitoring is the inability to detect or estimate the magnitude of oral airflow.32Oronasal thermistors and thermocouples detect the presence of airflow due to a change in sensor temperature, as exhaled gas is warmed to body temperature. The signal from these thermal devices is not proportional to flow33,41 and often overestimates flow as flow rates decrease.33 Excursions in the signal typically show some decrement during hypopnea, although not as prominent as those in the nasal pressure signal.19 Thermal sensors using polyvinylidene fluoride (PVDF) film produce a signal that is roughly proportional to the temperature difference between the two sides of the film and have a faster response time than thermistors or thermocouples.34,35 One study comparing the ability of an oronasal PVDF airflow sensor to a pneumotachograph in ten patients with OSA found that the output of a PVDF airflow sensor tracked the magnitude of changes in flow with reasonable accuracy.34 Although this study did not directly compare the PVDF sensor to traditional thermal sensors, it does suggest that PVDF sensors more accurately estimate the magnitude of airflow.34 While the inspiratory PVDF waveform may not routinely exhibit flattening during airflow limitation, PVDF sensors have the