XL
Xiang Li
Author with expertise in Radiomics in Medical Imaging Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(52% Open Access)
Cited by:
2,552
h-index:
63
/
i10-index:
265
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success

James Thrall et al.Feb 4, 2018
Worldwide interest in artificial intelligence (AI) applications, including imaging, is high and growing rapidly, fueled by availability of large datasets ("big data"), substantial advances in computing power, and new deep-learning algorithms. Apart from developing new AI methods per se, there are many opportunities and challenges for the imaging community, including the development of a common nomenclature, better ways to share image data, and standards for validating AI program use across different imaging platforms and patient populations. AI surveillance programs may help radiologists prioritize work lists by identifying suspicious or positive cases for early review. AI programs can be used to extract "radiomic" information from images not discernible by visual inspection, potentially increasing the diagnostic and prognostic value derived from image datasets. Predictions have been made that suggest AI will put radiologists out of business. This issue has been overstated, and it is much more likely that radiologists will beneficially incorporate AI methods into their practices. Current limitations in availability of technical expertise and even computing power will be resolved over time and can also be addressed by remote access solutions. Success for AI in imaging will be measured by value created: increased diagnostic certainty, faster turnaround, better outcomes for patients, and better quality of work life for radiologists. AI offers a new and promising set of methods for analyzing image data. Radiologists will explore these new pathways and are likely to play a leading role in medical applications of AI.
0
Citation546
0
Save
0

Federated learning for predicting clinical outcomes in patients with COVID-19

Ittai Dayan et al.Sep 15, 2021
Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare. Federated learning, a method for training artificial intelligence algorithms that protects data privacy, was used to predict future oxygen requirements of symptomatic patients with COVID-19 using data from 20 different institutes across the globe.
0

Deep Learning-Based Image Segmentation on Multimodal Medical Imaging

Zhe Guo et al.Jan 1, 2019
Multi-modality medical imaging techniques have been increasingly applied in clinical practice and research studies. Corresponding multi-modal image analysis and ensemble learning schemes have seen rapid growth and bring unique value to medical applications. Motivated by the recent success of applying deep learning methods to medical image processing, we first propose an algorithmic architecture for supervised multi-modal image analysis with cross-modality fusion at the feature learning level, classifier level, and decision-making level. We then design and implement an image segmentation system based on deep Convolutional Neural Networks (CNN) to contour the lesions of soft tissue sarcomas using multi-modal images, including those from Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET). The network trained with multi-modal images shows superior performance compared to networks trained with single-modal images. For the task of tumor segmentation, performing image fusion within the network (i.e. fusing at convolutional or fully connected layers) is generally better than fusing images at the network output (i.e. voting). This study provides empirical guidance for the design and application of multi-modal image analysis.
0
Citation315
0
Save
0

MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation

Cheng Chen et al.Aug 23, 2024
The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM's performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM's pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM's pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.
13

BigNeuron: A resource to benchmark and predict best-performing algorithms for automated reconstruction of neuronal morphology

Linus Manubens-Gil et al.May 11, 2022
ABSTRACT BigNeuron is an open community bench-testing platform combining the expertise of neuroscientists and computer scientists toward the goal of setting open standards for accurate and fast automatic neuron reconstruction. The project gathered a diverse set of image volumes across several species representative of the data obtained in most neuroscience laboratories interested in neuron reconstruction. Here we report generated gold standard manual annotations for a selected subset of the available imaging datasets and quantified reconstruction quality for 35 automatic reconstruction algorithms. Together with image quality features, the data were pooled in an interactive web application that allows users and developers to perform principal component analysis, t -distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and reconstruction data, and benchmarking of automatic reconstruction algorithms in user-defined data subsets. Our results show that image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. By benchmarking automatic reconstruction algorithms, we observed that diverse algorithms can provide complementary information toward obtaining accurate results and developed a novel algorithm to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms. Finally, to aid users in predicting the most accurate automatic reconstruction results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic reconstructions.
Load More