JT
Jinjun Tang
Author with expertise in Understanding Attitudes Towards Public Transport and Private Car
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(13% Open Access)
Cited by:
1,208
h-index:
39
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An Improved Fuzzy Neural Network for Traffic Speed Prediction Considering Periodic Characteristic

Jinjun Tang et al.Jan 17, 2017
This paper proposes a new method in construction fuzzy neural network to forecast travel speed for multi-step ahead based on 2-min travel speed data collected from three remote traffic microwave sensors located on a southbound segment of a fourth ring road in Beijing City. The first-order Takagi-Sugeno system is used to complete the fuzzy inference. To train the evolving fuzzy neural network (EFNN), two learning processes are proposed. First, a K-means method is employed to partition input samples into different clusters and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated. Second, a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Furthermore, a trigonometric regression function is introduced to capture the periodic component in the raw speed data. Specifically, the predicted performance between the proposed model and six traditional models are compared, which are artificial neural network, support vector machine, autoregressive integrated moving average model, and vector autoregressive model. The results suggest that the prediction performances of EFNN are better than those of traditional models due to their strong learning ability. As the prediction time step increases, the EFNN model can consider the periodic pattern and demonstrate advantages over other models with smaller predicted errors and slow raising rate of errors.
0

Real-Time Traffic Flow Parameter Estimation From UAV Video Based on Ensemble Classifier and Optical Flow

Ruimin Ke et al.Mar 7, 2018
Recently, the availability of unmanned aerial vehicle (UAV) opens up new opportunities for smart transportation applications, such as automatic traffic data collection. In such a trend, detecting vehicles and extracting traffic parameters from UAV video in a fast and accurate manner is becoming crucial in many prospective applications. However, from the methodological perspective, several limitations have to be addressed before the actual implementation of UAV. This paper proposes a new and complete analysis framework for traffic flow parameter estimation from UAV video. This framework addresses the well-concerned issues on UAV's irregular ego-motion, low estimation accuracy in dense traffic situation, and high computational complexity by designing and integrating four stages. In the first two stages an ensemble classifier (Haar cascade + convolutional neural network) is developed for vehicle detection, and in the last two stages a robust traffic flow parameter estimation method is developed based on optical flow and traffic flow theory. The proposed ensemble classifier is demonstrated to outperform the state-of-the-art vehicle detectors that designed for UAV-based vehicle detection. Traffic flow parameter estimations in both free flow and congested traffic conditions are evaluated, and the results turn out to be very encouraging. The dataset with 20,000 image samples used in this study is publicly accessible for benchmarking at http://www.uwstarlab.org/research.html.
0

A negative binomial Lindley approach considering spatiotemporal effects for modeling traffic crash frequency with excess zeros

Wencheng Wang et al.Aug 12, 2024
Statistical analysis of traffic crash frequency is significant for figuring out the distribution pattern of crashes, predicting the development trend of crashes, formulating traffic crash prevention measures, and improving traffic safety planning systems. In recent years, the theory and practice for traffic safety management have shown that road crash data have characteristics such as spatial correlation, temporal correlation, and excess zeros. If these characteristics are ignored in the modeling process, it may seriously affect the fitting performance and prediction accuracy of traffic crash frequency models and even lead to incorrect conclusions. In this research, traffic crash data from rural two-way two-lane from four counties in Pennsylvania, USA was modeled considering the spatiotemporal effects of crashes. First, a negative binomial Lindley spatiotemporal effect model of crash frequency was constructed at the micro level; Simultaneously, the characteristics and problems of excess zeros and potential heterogeneity of the crash data were resolved; Finally, the effects of road characteristics on crash frequency were analyzed. The results indicate a significant spatial correlation between the crash frequency of adjacent road sections. Compared with the negative binomial model, the negative binomial Lindley model can better handle the excess zeros characteristics in traffic crash data. The model that considers both spatial correlation and temporal conditional autoregressive effects has the best fit for the observed data. In addition, for road sections that allow passing and have a speed limitation of not less than 50 miles per hour, the crash frequency corresponding to these sections is lower due to their good visibility and road conditions. The increase in average turning angle and intersection density on the horizontal curve of the road section corresponds to an increase in crash frequency.
0

Exploring the Spatio-Temporally Heterogeneous Impact of Traffic Network Structure on Ride-Hailing Emissions Using Shenzhen, China, as a Case Study

Wenyuan Gao et al.May 27, 2024
The rise of ride-hailing services presents innovative solutions for curbing urban carbon emissions, yet poses challenges such as fostering fair competition and integrating with public transit. Analyzing the factors influencing ride-hailing emissions is crucial for understanding their relationship with other travel modes and devising policies aimed at steering individuals towards more environmentally sustainable travel options. Therefore, this study delves into factors impacting ride-hailing emissions, including travel demand, land use, demographics, and transportation networks. It highlights the interplay among urban structure, multi-modal travel, and emissions, focusing on network features such as betweenness centrality and accessibility. Employing the COPERT (Computer Programme to Calculate Emissions from Road Transport) model, ride-hailing emissions are calculated from vehicle trajectory data. To mitigate statistical errors from multicollinearity, variable selection involves tests and correlation analysis. Geographically and temporally weighted regression (GTWR) with an adaptive kernel function is designed to understand key influencing mechanisms, overcoming traditional GTWR limitations. It can dynamically adjust bandwidth based on the spatio-temporal distribution of data points. Experiments in Shenzhen validate this approach, showing a 9.8% and 10.8% increase in explanatory power for weekday and weekend emissions, respectively, compared to conventional GTWR. The discussion of findings provides insights for urban planning and low-carbon transport strategies.
0

Route Guidance Model with Limited Overlap on Freeway Network under Traffic Incidents

Xuan Zhang et al.May 28, 2024
With the increasing density of the freeway network, frequent traffic incidents on road segments have a significant impact on the operational efficiency of the road network. Therefore, it has become urgent and important to study traffic route guidance strategy on the road network level. The previous traffic route guidance method primarily focused on the congestion on the road segments where incidents occurred, with insufficient attention given to the impact of congestion on the road network level. In this study, a route guidance model with limited overlap is proposed to improve freeway network reliability under traffic incidents. Specifically, in order to explore alternative paths, we conducted a study on the problem of finding k-short paths with limited overlap. The objective is to identify a set of k -paths that are both sufficiently dissimilar and as short as possible. Then, we promptly update the route guidance information using a stochastic dynamic traffic assignment model that aligns with travelers’ path choice psychology. Moreover, we use the reliability of the road network to evaluate the network performance. To illustrate the model, the Jinan freeway network is selected as an experimental study. The effectiveness of this method was validated through SUMO simulations, comparing it with alternative route guidance methods, including Yen’s algorithm, A∗ algorithm, and ant colony algorithm. These results show that the proposed method has proven effective in mitigating traffic congestion arising from incidents and performs well in regard to the reliability of the road network under the impact of incidents.
Load More