In order to alleviate environmental pollution and the waste of resources caused by improper disposal of fungal residue, this study used fungal residue waste, which was treated with NaClO alkaline solution and nitric acid ethanol method for rough fiber preparation. The enzymatic hydrolysis of cellulase conditions were optimized using response surface optimization method, and the optimal preparation parameters were: enzyme addition of 5000 U/g, enzymatic hydrolysis temperature of 52 °C, enzymatic hydrolysis time of 2.65 h, and solid-liquid ratio of 1:20. The Fr-MCC purity reached over 97%. The Fr-MCC obtained had an irregular granular or lamellar aggregation morphology, typical I-type cellulose crystal structure and molecular features, good thermal stability, and was similar in properties to commercial MCC. It was judged to be suitable for further processing and manufacturing of biological base materials. This approach was shown to improve the utilization efficiency of cultivation residues, reducing environmental pollution caused by the accumulation of cultivation residues, and providing new methods and ideas for the preparation of MCC and other bio-based materials.