SP
Sudhanshu Pandey
Author with expertise in Global Methane Emissions and Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1,114
h-index:
23
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Satellite observations reveal extreme methane leakage from a natural gas well blowout

Sudhanshu Pandey et al.Dec 16, 2019
Methane emissions due to accidents in the oil and natural gas sector are very challenging to monitor, and hence are seldom considered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio's reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions.
0
Paper
Citation238
0
Save
0

Toward Low‐Latency Estimation of Atmospheric CO2 Growth Rates Using Satellite Observations: Evaluating Sampling Errors of Satellite and In Situ Observing Approaches

Sudhanshu Pandey et al.Aug 1, 2024
Abstract The atmospheric CO 2 growth rate is a fundamental measure of climate forcing. NOAA's growth rate estimates, derived from in situ observations at the marine boundary layer (MBL), serve as the benchmark in policy and science. However, NOAA's MBL‐based method encounters challenges in accurately estimating the whole‐atmosphere CO 2 growth rate at sub‐annual scales. Here we introduce the Growth Rate from Satellite Observations (GRESO) method as a complementary approach to estimate the whole‐atmosphere CO 2 growth rate utilizing satellite data. Satellite CO 2 observations offer extensive atmospheric coverage that extends the capability of the current NOAA benchmark. We assess the sampling errors of the GRESO and NOAA methods using 10 atmospheric transport model simulations. The simulations generate synthetic OCO‐2 satellite and NOAA MBL data for calculating CO 2 growth rates, which are compared against the global sum of carbon fluxes used as model inputs. We find good performance for the NOAA method (R = 0.93, RMSE = 0.12 ppm year −1 or 0.25 PgC year −1 ). GRESO demonstrates lower sampling errors (R = 1.00; RMSE = 0.04 ppm year −1 or 0.09 PgC year −1 ). Additionally, GRESO shows better performance at monthly scales than the NOAA method (R = 0.76 vs. 0.47, respectively). Due to CO 2 's atmospheric longevity, the NOAA method accurately captures growth rates over 5‐year intervals. GRESO's robustness across partial coverage configurations (ocean or land data) shows that satellites can be promising tools for low‐latency CO 2 growth rate information, provided the systematic biases are minimized using in situ observations. Along with accurate and calibrated NOAA in situ data, satellite‐derived growth rates can provide information about the global carbon cycle at sub‐annual scales.
0
Paper
Citation1
0
Save