JG
Juan Gao
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High Spatial‐Resolution and Acquisition‐Efficiency Cardiac MR T1 Mapping Based on Radial bSSFP and a Low‐Rank Tensor Constraint

Juan Gao et al.Aug 14, 2024
Background Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. Purpose To develop a technique for high‐resolution cardiac T1 mapping with a less‐than‐100‐millisecond acquisition window based on radial MOdified Look‐Locker Inversion recovery (MOLLI) and a calibrationless space‐contrast‐coil locally low‐rank tensor (SCC‐LLRT) constrained reconstruction. Study Type Prospective. Subjects/Phantom Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2‐agar phantom. Field Strength/Sequence 3‐T, standard MOLLI, radial MOLLI, inversion‐recovery spin‐echo, late gadolinium enhancement. Assessment SCC‐LLRT was compared to a conventional locally low‐rank (LLR) method through simulations using Normalized Root‐Mean‐Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5‐point scale (5 = best). Statistical Tests Paired t ‐test, Wilcoxon signed‐rank test, intraclass correlation coefficient analysis, linear regression, Bland–Altman analysis. P < 0.05 was considered statistically significant. Results In simulations, SCC‐LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. Data Conclusion The proposed method enables high‐resolution cardiac T1 mapping with a short acquisition window and improved image quality. Evidence Level 1 Technical Efficacy Stage 1
0

Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint

Haiyang Chen et al.Sep 16, 2024
Abstract Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.
0

Improve myocardial strain estimation based on deformable groupwise registration with a locally low-rank dissimilarity metric

Haiyang Chen et al.Dec 5, 2024
Current mainstream cardiovascular magnetic resonance-feature tracking (CMR-FT) methods, including optical flow and pairwise registration, often suffer from the drift effect caused by accumulative tracking errors. Here, we developed a CMR-FT method based on deformable groupwise registration with a locally low-rank (LLR) dissimilarity metric to improve myocardial tracking and strain estimation accuracy. The proposed method, Groupwise-LLR, performs feature tracking by iteratively updating the entire displacement field across all cardiac phases to minimize the sum of the patchwise signal ranks of the deformed movie. The method was compared with alternative CMR-FT methods including the Farneback optical flow, a sequentially pairwise registration method, and a global low rankness-based groupwise registration method via a simulated dataset (n = 20), a public cine data set (n = 100), and an in-house tagging-MRI patient dataset (n = 16). The proposed method was also compared with two general groupwise registration methods, nD + t B-Splines and pTVreg, in simulations and in vivo tracking. On the simulated dataset, Groupwise-LLR achieved the lowest point tracking errors (p = 0.13 against pTVreg for the temporally averaged point tracking errors in the long-axis view, and p < 0.05 for all other cases), voxelwise strain errors (all p < 0.05), and global strain errors (p = 0.05 against pTVreg for the longitudinal global strain errors, and p < 0.05 for all other cases). On the public dataset, Groupwise-LLR achieved the lowest contour tracking errors (all p < 0.05), reduced the drift effect in late-diastole, and preserved similar inter-observer reproducibility as the alternative methods. On the patient dataset, Groupwise-LLR correlated better with tagging-MRI for radial strains than the other CMR-FT methods in multiple myocardial segments and levels. The proposed Groupwise-LLR reduces the drift effect and provides more accurate myocardial tracking and strain estimation than the alternative methods. The method may thus facilitate a more accurate estimation of myocardial strains for clinical assessments of cardiac function.