PW
P. Wiseman
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
419
h-index:
27
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Pantheon+ Analysis: Cosmological Constraints

Dillon Brout et al.Oct 1, 2022
We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from $z=0.001$ to 2.26. This work features an increased sample size, increased redshift span, and improved treatment of systematic uncertainties in comparison to the original Pantheon analysis and results in a factor of two improvement in cosmological constraining power. For a Flat$\Lambda$CDM model, we find $\Omega_M=0.334\pm0.018$ from SNe Ia alone. For a Flat$w_0$CDM model, we measure $w_0=-0.90\pm0.14$ from SNe Ia alone, H$_0=73.5\pm1.1$ km s$^{-1}$ Mpc$^{-1}$ when including the Cepheid host distances and covariance (SH0ES), and $w_0=-0.978^{+0.024}_{-0.031}$ when combining the SN likelihood with constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both $w_0$ values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a Flat$w_0w_a$CDM universe, and measure $w_a=-0.1^{+0.9}_{-2.0}$ from Pantheon+ alone, H$_0=73.3\pm1.1$ km s$^{-1}$ Mpc$^{-1}$ when including SH0ES, and $w_a=-0.65^{+0.28}_{-0.32}$ when combining Pantheon+ with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one third of the total uncertainty in the measurement of H$_0$ and cannot explain the present "Hubble tension" between local measurements and early-Universe predictions from the cosmological model.
0

Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics

N. Jeffrey et al.Nov 26, 2024
ABSTRACT We present simulation-based cosmological wcold dark matter (wCDM) inference using dark energy survey year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks, non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our inference results. This paper also describes the Gower Street simulation suite: 791 full-sky pkdgrav3 dark matter simulations, with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock dark energy survey lensing data sets. For wCDM inference, for which we allow $-1&lt; w&lt; -\frac{1}{3}$, our most constraining result uses power spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives $\Omega _{\rm m}= 0.283^{+0.020}_{-0.027}$, ${S_8 = 0.804^{+0.025}_{-0.017}}$, and $w &lt; -0.80$ (with a 68 per cent credible interval); compared to the power spectrum inference, this is more than a factor of two improvement in dark energy parameter ($\Omega _{\rm DE}, w$) precision.
0

The dark energy survey supernova program: investigating beyond-ΛCDM

R Camilleri et al.Aug 19, 2024
ABSTRACT We report constraints on a variety of non-standard cosmological models using the full 5-yr photometrically classified type Ia supernova sample from the Dark Energy Survey (DES-SN5YR). Both Akaike Information Criterion (AIC) and Suspiciousness calculations find no strong evidence for or against any of the non-standard models we explore. When combined with external probes, the AIC and Suspiciousness agree that 11 of the 15 models are moderately preferred over Flat-$\Lambda$CDM suggesting additional flexibility in our cosmological models may be required beyond the cosmological constant. We also provide a detailed discussion of all cosmological assumptions that appear in the DES supernova cosmology analyses, evaluate their impact, and provide guidance on using the DES Hubble diagram to test non-standard models. An approximate cosmological model, used to perform bias corrections to the data holds the biggest potential for harbouring cosmological assumptions. We show that even if the approximate cosmological model is constructed with a matter density shifted by $\Delta \Omega _{\rm m}\sim 0.2$ from the true matter density of a simulated data set the bias that arises is subdominant to statistical uncertainties. Nevertheless, we present and validate a methodology to reduce this bias.
0

Environmental Quenching of Low-surface-brightness Galaxies Near Hosts from Large Magellanic Cloud to Milky Way Mass Scales

J. Bhattacharyya et al.Nov 1, 2024
Abstract Low-surface-brightness galaxies (LSBGs) are excellent probes of quenching and other environmental processes near massive galaxies. We study an extensive sample of LSBGs near massive hosts in the local universe that are distributed across a diverse range of environments. The LSBGs with surface-brightness μ eff , g > 24.2  mag   arcsec − 2  are drawn from the Dark Energy Survey Year 3 catalog while the hosts with masses 9.0 < log ( M ⋆ / M ⊙ ) < 11.0 comparable to the Milky Way and the Large Magellanic Cloud are selected from the z0MGS sample. We study the projected radial density profiles of LSBGs as a function of their color and surface brightness around hosts in both the rich Fornax–Eridanus cluster environment and the low-density field. We detect an overdensity with respect to the background density, out to 2.5 times the virial radius for both hosts in the cluster environment and the isolated field galaxies. When the LSBG sample is split by g − i color or surface brightness μ eff, g , we find the LSBGs closer to their hosts are significantly redder and brighter, like their high-surface-brightness counterparts. The LSBGs form a clear “red sequence” in both the cluster and isolated environments that is visible beyond the virial radius of the hosts. This suggests preprocessing of infalling LSBGs and a quenched backsplash population around both host samples. More so, the relative prominence of the “blue cloud” feature implies that preprocessing is ongoing near the isolated hosts compared to the cluster environment where the LSBGs are already well processed.
0

The dark energy survey: detection of weak lensing magnification of supernovae and constraints on dark matter haloes

P Shah et al.Jun 18, 2024
The residuals of the distance moduli of Type Ia supernovae (SN Ia) relative to a Hubble diagram fit contain information about the inhomogeneity of the universe, due to weak lensing magnification by foreground matter. By correlating the residuals of the Dark Energy Survey Year 5 SN Ia sample (DES-SN5YR) with extra-galactic foregrounds from the DES Y3 Gold catalog, we detect the presence of lensing at $6.0 \sigma$ significance. This is the first detection with a significance level above $5\sigma$. Constraints on the effective mass-to-light ratios and radial profiles of dark-matter haloes surrounding individual galaxies are also obtained. We show that the scatter of SNe Ia around the Hubble diagram is reduced by modifying the standardisation of the distance moduli to include an easily calculable de-lensing (i.e., environmental) term. We use the de-lensed distance moduli to recompute cosmological parameters derived from SN Ia, finding in Flat $w$CDM a difference of $\Delta \Omega_{\rm M} = +0.036$ and $\Delta w = -0.056$ compared to the unmodified distance moduli, a change of $\sim 0.3\sigma$. We argue that our modelling of SN Ia lensing will lower systematics on future surveys with higher statistical power. We use the observed dispersion of lensing in DES-SN5YR to constrain $\sigma_8$, but caution that the fit is sensitive to uncertainties at small scales. Nevertheless, our detection of SN Ia lensing opens a new pathway to study matter inhomogeneity that complements galaxy-galaxy lensing surveys and has unrelated systematics.
0

Copacabana: A probabilistic membership assignment method for galaxy clusters

Johnny Esteves et al.Nov 26, 2024
ABSTRACT Cosmological analyses using galaxy clusters in optical/near-infrared photometric surveys require robust characterization of their galaxy content. Precisely determining which galaxies belong to a cluster is crucial. In this paper, we present the COlor Probabilistic Assignment of Clusters And BAyesiaNAnalysis (Copacabana) algorithm. Copacabana computes membership probabilities for all galaxies within an aperture centred on the cluster using photometric redshifts, colours, and projected radial probability density functions. We use simulations to validate Copacabana and we show that it achieves up to 89 per cent membership accuracy with a mild dependence on photometric redshift uncertainties and choice of aperture size. We find that the precision of the photometric redshifts has the largest impact on the determination of the membership probabilities followed by the choice of the cluster aperture size. We also quantify how much these uncertainties in the membership probabilities affect the stellar mass–cluster mass scaling relation, a relation that directly impacts cosmology. Using the sum of the stellar masses weighted by membership probabilities ($\rm \mu _{\star }$) as the observable, we find that Copacabana can reach an accuracy of 0.06 dex in the measurement of the scaling relation at low redshift for a Legacy Survey of Space and Time type survey. These results indicate the potential of Copacabana and $\rm \mu _{\star }$ to be used in cosmological analyses of optically selected clusters in the future.
0

The Dark Energy Survey Supernova Program: Slow supernovae show cosmological time dilation out to z ∼ 1.

Ryan White et al.Aug 21, 2024
Abstract We present a precise measurement of cosmological time dilation using the light curves of 1504 type Ia supernovae from the Dark Energy Survey spanning a redshift range 0.1 ≲ z ≲ 1.2. We find that the width of supernova light curves is proportional to (1 + z), as expected for time dilation due to the expansion of the Universe. Assuming type Ia supernovae light curves are emitted with a consistent duration Δtem, and parameterising the observed duration as Δtobs = Δtem(1 + z)b, we fit for the form of time dilation using two methods. Firstly, we find that a power of b ≈ 1 minimises the flux scatter in stacked subsamples of light curves across different redshifts. Secondly, we fit each target supernova to a stacked light curve (stacking all supernovae with observed bandpasses matching that of the target light curve) and find b = 1.003 ± 0.005 (stat) ± 0.010 (sys). Thanks to the large number of supernovae and large redshift-range of the sample, this analysis gives the most precise measurement of cosmological time dilation to date, ruling out any non-time-dilating cosmological models at very high significance.