ABSTRACT We present simulation-based cosmological wcold dark matter (wCDM) inference using dark energy survey year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks, non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our inference results. This paper also describes the Gower Street simulation suite: 791 full-sky pkdgrav3 dark matter simulations, with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock dark energy survey lensing data sets. For wCDM inference, for which we allow $-1< w< -\frac{1}{3}$, our most constraining result uses power spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives $\Omega _{\rm m}= 0.283^{+0.020}_{-0.027}$, ${S_8 = 0.804^{+0.025}_{-0.017}}$, and $w < -0.80$ (with a 68 per cent credible interval); compared to the power spectrum inference, this is more than a factor of two improvement in dark energy parameter ($\Omega _{\rm DE}, w$) precision.