MY
M. Yamamoto
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
14
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics

N. Jeffrey et al.Nov 26, 2024
ABSTRACT We present simulation-based cosmological wcold dark matter (wCDM) inference using dark energy survey year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks, non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our inference results. This paper also describes the Gower Street simulation suite: 791 full-sky pkdgrav3 dark matter simulations, with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock dark energy survey lensing data sets. For wCDM inference, for which we allow $-1&lt; w&lt; -\frac{1}{3}$, our most constraining result uses power spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives $\Omega _{\rm m}= 0.283^{+0.020}_{-0.027}$, ${S_8 = 0.804^{+0.025}_{-0.017}}$, and $w &lt; -0.80$ (with a 68 per cent credible interval); compared to the power spectrum inference, this is more than a factor of two improvement in dark energy parameter ($\Omega _{\rm DE}, w$) precision.
0

Copacabana: A probabilistic membership assignment method for galaxy clusters

Johnny Esteves et al.Nov 26, 2024
ABSTRACT Cosmological analyses using galaxy clusters in optical/near-infrared photometric surveys require robust characterization of their galaxy content. Precisely determining which galaxies belong to a cluster is crucial. In this paper, we present the COlor Probabilistic Assignment of Clusters And BAyesiaNAnalysis (Copacabana) algorithm. Copacabana computes membership probabilities for all galaxies within an aperture centred on the cluster using photometric redshifts, colours, and projected radial probability density functions. We use simulations to validate Copacabana and we show that it achieves up to 89 per cent membership accuracy with a mild dependence on photometric redshift uncertainties and choice of aperture size. We find that the precision of the photometric redshifts has the largest impact on the determination of the membership probabilities followed by the choice of the cluster aperture size. We also quantify how much these uncertainties in the membership probabilities affect the stellar mass–cluster mass scaling relation, a relation that directly impacts cosmology. Using the sum of the stellar masses weighted by membership probabilities ($\rm \mu _{\star }$) as the observable, we find that Copacabana can reach an accuracy of 0.06 dex in the measurement of the scaling relation at low redshift for a Legacy Survey of Space and Time type survey. These results indicate the potential of Copacabana and $\rm \mu _{\star }$ to be used in cosmological analyses of optically selected clusters in the future.