JR
Jörg Rinklebe
Author with expertise in Environmental Impact of Heavy Metal Contamination
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
41
(29% Open Access)
Cited by:
7,640
h-index:
111
/
i10-index:
466
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review

Vasileios Antoniadis et al.Jun 20, 2017
Trace elements (TEs) are deposited to soils mainly due to anthropogenic activities and pose a significant threat to human health. In this review we aimed at (a) discussing the phytoavailability of TEs as affected by various soil parameters, and by plant defense mechanisms related to uptake and translocation; (b) examining soil and plant indices related to TE phytoavailability; (c) clarifying the challenges and problems related to phytoremediation; and (d) exploring the often encountered discrepancies of lower-than-expected TE toxicity. We particularly discussed the soil-to-plant availability index (transfer coefficient, TC), because it encompasses all soil and plant factors related to TE phytoavailability. As for soil, we explored the effect of pH, redox potential, clay and organic matter contents, as well as aging of added elements. The latter is a key factor in interpreting the observed lower-than-expected toxicity to plants in real field conditions. This is because the discrepancy is very often generated by growth experiments that expose plants to TEs directly from TE-laden solutions or by studies that spike soils with TEs only days or weeks before planting. Also, the behavior of TEs depends on the nature and quantity of TEs. As for plant, TE absorption or exclusion is highly related to species-specific defense mechanisms developed by plants so that they are exposed to TE-induced stress. These mechanisms address TE exposure by operating both outside and inside the plant body; outside with the assistance of root exudates, and the rhizosphere microflora, and inside with selective translocation and storage processes. The absorption/exclusion behavior of plants also depends on root activities and related soil chemical processes which are highly localized within a spatial scale of a few mm from roots. Novel techniques for the imaging of TE biogeochemistry at the root-soil interface are therefore addressed and their explanatory power is demonstrated. Such plant behavior greatly affects phytoremediation, a process which also depends on the maximal TE uptake capacity of plants, especially of hyperaccumulators. However, phytoremediation also greatly depends on plant biomass yield, an important factor in determining the time required to complete the procedure. In conclusion, soil factors, as well as plant- and TE- related issues, may create discrepancies in TE phytoavailability and phytoremediation that need to be thoroughly understood and addressed.
0
Citation688
0
Save
0

Effect of biochar on cadmium bioavailability and uptake in wheat ( Triticum aestivum L.) grown in a soil with aged contamination

Tahir Abbas et al.Feb 27, 2017
Cadmium (Cd) is a well-known and widespread toxic heavy metal while the effects of biochar (BC) on Cd bioavailability and toxicity in wheat, especially in soils with aged contamination are largely unknown. In the present study, the effect of rice straw BC on Cd immobilization in soil and uptake by wheat in an agricultural contaminated-soil was investigated. Different levels of rice straw BC (0%, 1.5%, 3.0% and 5% w/w) were incorporated into the soil and incubated for two weeks. After this, wheat plants were grown in the amended soil until maturity. The results show that the BC treatments increased the soil and soil solution pH and silicon contents in the plant tissues and in the soil solution while decreased the bioavailable Cd in soil. The BC application increased the plant-height, spike-length, shoot and root dry mass and grain yield in a dose additive manner when compared with control treatment. As compared to control, BC application increased the photosynthetic pigments and gas exchange parameters in leaves. Biochar treatments decreased the oxidative stress while increased the activities of antioxidant enzymes in shoots compared to the control. The BC treatments decreased the Cd and Ni while increased Zn and Mn concentrations in shoots, roots, and grains of wheat compared to the control. As compared to the control, Cd concentration in wheat grains decreased by 26%, 42%, and 57% after the application of 1.5%, 3.0%, and 5.0% BC respectively. Overall, the application of rice straw BC might be effective in immobilization of metal in the soil and reducing its uptake and translocation to grains.
0
Paper
Citation423
0
Save
0

Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony

Tina Frohne et al.Nov 20, 2010
An automated biogeochemical microcosm system allowing the control of redox potential (EH) in soil suspensions was used to assess the effect of EH on the mobility of cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), and manganese (Mn) as well as on the methylation of arsenic (As) and antimony (Sb) in a contaminated and slightly acidic floodplain soil. The experiment was conducted under stepwise variation from reducing (approximately −300 mV at pH 5) to oxidizing (+ 600 mV at pH 5) conditions. The EH was found to be an important factor controlling the dynamics of studied compounds and elements. Concentrations of Cd, Cu, Mn, Ni, and Zn in solution were low at low EH and increased with rising EH what might be attributed to the interaction with dissolved organic carbon (DOC), Mn, and precipitation as sulphides. Redox potential and pH correlate significantly with Cd, Ni, Cu, Zn, and Mn. Total Fe concentrations in solution were high at low EH and dropped sharply at EH > 350 mV at pH 5 to lower values due to the formation of Fe (hydr)oxides. Other metals did not adsorb to or co-precipitate with Fe, which may be attributed to the low pH (between 4.4 and 5.3) amongst other factors. Concentrations of inorganic arsenic (Asi) and antimony (Sbi), momomethyl arsenic (MMAs), monomethyl antimony (MMSb), and dimethyl arsenic (DMAs) in solution decreased significantly with rising EH, indicating that low EH promotes the mobility of these compounds.
0

Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany

Jörg Rinklebe et al.Feb 18, 2019
Floodplain soils across Central Elbe River (CER), Germany, vary considerably in potentially toxic element (PTE) content. However, there has never been a comprehensive study that links PTE levels with human health risk for children and adults. Our objective was to determine the contamination of 13 PTEs in 94 soil profiles along CER and assess the associated health risk via diverse indices for adults and children. Of 94 soil profiles, we measured soil properties and total content of arsenic, barium, chromium, copper, nickel, lead, rubidium, tin, strontium, vanadium, zinc, and zirconium using x-ray fluorescence spectrometer (XRF). We calculated the Contamination Factor and the Pollution Load Index (PLI), and assessed the health risk for male and female adults as well as for children. Topsoil median contents of Cr (84 mg kg−1), Cu (42), Ni (33), and Zn (195) exceeded the Precautionary Values for sandy soils according to the German Federal Soil Protection and Contaminated Sites Ordinance, while As, Pb, and V were 32, 73, and 77 mg kg−1, respectively. Median topsoil PLI was 1.73, indicating elevated multi-element contamination, with 90th percentile and maximum values being 3.20 and 4.31, respectively. All PTE concentrations were higher in top- compared to subsoils. Also at the 50th percentile the most enriched elements were Sn and As, followed by Zr and Rb, while in the 90th percentile Sn and As were followed by Zn, Pb and Cu. Median children's hazard index (HI) was higher than unity (HI = 2.27) and the 90th percentile was 5.53, indicating elevated health risk. Adult median HIs were 0.18 for male and 0.21 for female persons. Arsenic was found to be the primary contributor to total risk, accounting of 57.4% of HI in all three-person groupings, with Cr (17.3%) being the second, and V (10.2%) the third. Children's health is at dramatically higher risk than that of adults; also As, Cr, Pb, and V have a predominant role in contamination-related health risks. The presence of V, a less-expected element, among those of major risk contribution, reveals the necessity of monitoring areas at large scale. Our results demonstrate that our study may serve as a model for similar works studying multi-element-contaminated areas in future.
0
Paper
Citation363
0
Save
0

Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications

Liuwei Wang et al.Nov 3, 2020
Biochar has triggered a black gold rush in environmental studies as a carbon-rich material with well-developed porous structure and tunable functionality. While much attention has been placed on its apparent ability to store carbon in the ground, immobilize soil pollutants, and improve soil fertility, its temporally evolving in situ performance in these roles must not be overlooked. After field application, various environmental factors, such as temperature variations, precipitation events and microbial activities, can lead to its fragmentation, dissolution, and oxidation, thus causing drastic changes to the physicochemical properties. Direct monitoring of biochar-amended soils can provide good evidence of its temporal evolution, but this requires long-term field trials. Various artificial aging methods, such as chemical oxidation, wet–dry cycling and mineral modification, have therefore been designed to mimic natural aging mechanisms. Here we evaluate the science of biochar aging, critically summarize aging-induced changes to biochar properties, and offer a state-of-the-art for artificial aging simulation approaches. In addition, the implications of biochar aging are also considered regarding its potential development and deployment as a soil amendment. We suggest that for improved simulation and prediction, artificial aging methods must shift from qualitative to quantitative approaches. Furthermore, artificial preaging may serve to synthesize engineered biochars for green and sustainable environmental applications.
0
Paper
Citation355
0
Save
0

Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination

Nabeel Niazi et al.Sep 29, 2017
In this study, we examined the removal of arsenite (As(III)) and arsenate (As(V)) by perilla leaf-derived biochars produced at 300 and 700 °C (referred as BC300 and BC700) in aqueous environments. Results revealed that the Langmuir isotherm model provided the best fit for As(III) and As(V) sorption, with the sorption affinity following the order: BC700-As(III) > BC700-As(V) > BC300-As(III) > BC300-As(V) (QL = 3.85–11.01 mg g−1). In general, As removal decreased (76–60%) with increasing pH from 7 to 10 except for the BC700-As(III) system, where notably higher As removal (88–90%) occurred at pH from 7 to 9. Surface functional moieties contributed to As sequestration by the biochars examined here. However, significantly higher surface area and aromaticity of BC700 favored a greater As removal compared to BC300, suggesting that surface complexation/precipitation dominated As removal by BC700. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy demonstrated that up to 64% of the added As(V) was reduced to As(III) in BC700- and BC300-As(V) sorption experiments, and in As(III) sorption experiments, partial oxidation of As(III) to As(V) occurred (37–39%). However, XANES spectroscopy was limited to precisely quantify As binding with sulfur species as As2S3-like phase. Both biochars efficiently removed As from natural As-contaminated groundwater (As: 23–190 μg L−1; n = 12) despite in the presence of co-occurring anions (e.g., CO32−, PO43−, SO42−) with the highest levels of As removal observed for BC700 (97–100%). Overall, this study highlights that perilla leaf biochars, notably BC700, possessed the greatest ability to remove As from solution and groundwater (drinking water). Significantly, the integrated spectroscopic techniques advanced our understanding to examine complex redox transformation of As(III)/As(V) with biochar, which are crucial to determine fate of As on biochar in aquatic environments.
Load More