MB
Michel Barsoum
Author with expertise in Two-Dimensional Transition Metal Carbides and Nitrides (MXenes)
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
77
(53% Open Access)
Cited by:
70,211
h-index:
134
/
i10-index:
499
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2

Michael Naguib et al.Aug 22, 2011
Advanced MaterialsVolume 23, Issue 37 p. 4248-4253 Communication Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 Michael Naguib, Michael Naguib Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorMurat Kurtoglu, Murat Kurtoglu Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorVolker Presser, Volker Presser Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorJun Lu, Jun Lu Department of Physics, IFM, Linkoping University, Linkoping 58183, SwedenSearch for more papers by this authorJunjie Niu, Junjie Niu Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorMin Heon, Min Heon Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorLars Hultman, Lars Hultman Department of Physics, IFM, Linkoping University, Linkoping 58183, SwedenSearch for more papers by this authorYury Gogotsi, Corresponding Author Yury Gogotsi [email protected] Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USADepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.Search for more papers by this authorMichel W. Barsoum, Corresponding Author Michel W. Barsoum [email protected] Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USADepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.Search for more papers by this author Michael Naguib, Michael Naguib Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorMurat Kurtoglu, Murat Kurtoglu Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorVolker Presser, Volker Presser Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorJun Lu, Jun Lu Department of Physics, IFM, Linkoping University, Linkoping 58183, SwedenSearch for more papers by this authorJunjie Niu, Junjie Niu Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorMin Heon, Min Heon Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USASearch for more papers by this authorLars Hultman, Lars Hultman Department of Physics, IFM, Linkoping University, Linkoping 58183, SwedenSearch for more papers by this authorYury Gogotsi, Corresponding Author Yury Gogotsi [email protected] Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USADepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.Search for more papers by this authorMichel W. Barsoum, Corresponding Author Michel W. Barsoum [email protected] Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USADepartment of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.Search for more papers by this author First published: 22 August 2011 https://doi.org/10.1002/adma.201102306Citations: 6,737Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract 2D Ti3C2 nanosheets, multilayer structures, and conical scrolls produced by room temperature exfoliation of Ti3AlC2 in HF are reported. Since Ti3AlC2 is a member of a 60+ group of layered ternary carbides and nitrides, this discovery opens a door to the synthesis of a large number of other 2D crystals. References 1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. 2 D. Pacilé, J. C. Meyer, C. O. Girit, A. Zettl, Appl. Phys. Lett. 2008, 92, 133107. 3 P. H. Nadeau, Appl. Clay Sci. 1987, 2, 83. 4 R. Ma, T. Sasaki, Adv. Mater. 2010, 22, 5082. 5 P. Joensen, R. F. Frindt, S. R. Morrison, Mater. Res. Bull 1986, 21, 457. 6 M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498. 7 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282. 8 J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568. 9 M. W. Barsoum, Prog. Solid State Chem. 2000, 28, 201. 10 M. W. Barsoum, in Ceramics Science and Technology, Vol. 2: Properties, Vol. 2, (Eds: R. R. Riedel, I.-W. Chen), Wiley-VCH Verlag GmbH & Co, Weinheim, Germany 2010. 11 X. H. Wang, Y. C. Zhou, J. Mater. Sci. Technol. 2010, 26, 385. 12 N. V. Tzenov, M. W. Barsoum, J. Am. Ceram. Soc. 2000, 83, 825. 13 T. El-Raghy, M. W. Barsoum, J. Appl. Phys. 1998, 83, 112. 14 M. W. Barsoum, T. El-Raghy, L. Farber, M. Amer, R. Christini, A. Adams, J. Electrochem. Soc. 1999, 146, 3919. 15 T. El-Raghy, M. W. Barsoum, M. Sika, Mater. Sci. Eng. A 2001, 298, 174. 16 M. W. Barsoum, J. Golczewski, H. J. Siefert, F. Aldinger, J. Alloys Compd. 2002, 340, 173. 17 Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley, M. W. Barsoum, Nat. Mater. 2003, 2, 591. 18 G. Yushin, E. N. Hoffman, M. W. Barsoum, Y. Gogotsi, C. A. Howell, S. R. Sandeman, G. J. Phillips, A. W. Lloyd, S. V. Mikhalovsky, Biomaterials 2006, 27, 5755. 19 M. W. Barsoum, M. Radovic, in Encyclopedia of Materials: Science and Technology, (Eds: K. H. J. Buschow, W. C. Robert, C. F. Merton, I. Bernard, J. K. Edward, M. Subhash, V. Patrick), Elsevier, Oxford 2004, 1. 20 B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley, Boston, 1978. 21 C. N. R. Rao, K. S. Subrahmanyam, H. S. S. Ramakrishna Matte, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh, D. J. Late, Sci. Technol. Adv. Mater. 2010, 11, 054502. 22 J. Spanier, S. Gupta, M. Amer, M. W. Barsoum, Phys. Rev. B 2005, 71, 012103. 23 S. Myhra, J. A. A. Crossley, M. W. Barsoum, J. Phys. Chem. Solids 2001, 62, 811. 24 M. Schmidt, S. G. Steinemann, Fresenius J. Anal. Chem. 1991, 341, 412. 25 L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner, J. Mater. Chem. 2005, 15, 974. 26 L. M. Viculis, J. J. Mack, R. B. Kaner, Science 2003, 299, 1361. 27 M. V. Savoskin, V. N. Mochalin, A. P. Yaroshenko, N. I. Lazareva, T. E. Konstantinova, I. V. Barsukov, I. G. Prokofiev, Carbon 2007, 45, 2797. 28 T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146. 29 K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 2006, 311, 977. 30 F. Schwierz, Nat. Nanotechnol. 2010, 5, 487. 31 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147. 32 S. Gupta, E. N. Hoffman, M. W. Barsoum, J. Alloys Compd. 2006, 426, 168. 33 M. W. Barsoum, T. El-Raghy, M. Ali, Metall. Mater. Trans. A 2000, 31, 1857. Citing Literature Volume23, Issue37October 4, 2011Pages 4248-4253 ReferencesRelatedInformation
0

Flexible and conductive MXene films and nanocomposites with high capacitance

Zheng Ling et al.Nov 11, 2014
MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2T(x) MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2T(x)/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 10(4) S/m in the case of the Ti3C2T(x)/PVA composite film and 2.4 × 10(5) S/m for pure Ti3C2T(x) films. The tensile strength of the Ti3C2T(x)/PVA composites was significantly enhanced compared with pure Ti3C2T(x) or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm(3) for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.
Load More