CW
Chaoxia Wang
Author with expertise in Wearable Nanogenerator Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
697
h-index:
39
/
i10-index:
139
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics

Tian Carey et al.Oct 25, 2017
Abstract Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2 V −1 s −1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.
0

Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide

Jiesheng Ren et al.Oct 19, 2016
A flexible conductive cotton fabric was demonstrated by formulation and deposition of a graphene oxide (GO) dispersion onto a cotton fabric by vacuum filtration. The deposited GO amount was controlled by the concentration and volume of the GO dispersion. The GO was reduced by a hot press method at 180 °C for 60 min, and no chemical reductant was needed in both the deposition and reduction processes. The carbon-oxygen ratio increased from 1.77 to 3.72 after the hot press reduction. The as-prepared flexible conductive cotton fabric showed a sheet resistance as low as 0.9 kΩ/sq. The sheet resistance of the conductive cotton fabric only increased from ∼0.9 kΩ/sq to ∼1.2 kΩ/sq after 10 washing cycles, exhibiting good washability. The conductive cotton fabric showed viability as a strain sensor even after 400 bending cycles, in which the stable change in the electrical resistance went from ∼3500 kΩ under tensile strain to ∼10 kΩ under compressive strain. This cost-effective and environmentally-friendly method can be easily extended to scalable production of reduced GO based flexible conductive cotton fabrics.
0
Paper
Citation334
0
Save
0

MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring

Junping Peng et al.Jun 1, 2024
Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electronics, offering applications in energy harvesting, movement tracking, and health monitoring. Nevertheless, developing thermoelectric devices with exceptional flexibility, enduring thermoelectric stability, multifunctional sensing, and comfortable wear remains a challenge. In this work, a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli. This is achieved by constructing an adhesive polydopamine (PDA) layer on the nylon fabric surface, which facilitates the subsequent MXene attachment through hydrogen bonding. This fusion results in MXene-based thermoelectric fabric that excels in both temperature sensing and strain sensing. The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability, while also delivering excellent sensitivity, rapid responsiveness (60 ms), and remarkable durability in strain sensing (3200 cycles). Moreover, when affixed to a mask, this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat, converting it into electrical energy and accurately discerning the body's respiratory rate. In addition, the MXene-based thermoelectric fabric can monitor the state of the body's joint through its own deformation. Furthermore, it possesses the capability to convert solar energy into heat. These findings indicate that MXene-based thermoelectric fabric holds great promise for applications in power generation, motion tracking, and health monitoring.
0

Shape-stabilized flexible thermochromic films with one-sided adhesion via gradient crosslinking strategy for temperature indicating

Jia Li et al.Jan 1, 2025
Thermochromic dyes (TCDs) based on a three-component color change system suffer from solid rigidity and liquid leakage issues because of the intrinsic solid-liquid phase change performance, resulting in difficulty in temperature visualization applications for smart wearable fields. Despite considerable efforts in microencapsulation of thermochromic dyes, designing and fabricating essentially flexible thermochromic phase change films still need to be explored. Herein, a one-sided adhesive gradient-crosslinked thermochromic film is reported to address these issues to make a trade-off between stability and flexibility, excellent thermochromic performance, and temperature visualization. The thermochromic wearable films have been fabricated exploiting tea polyphenol thermochromic dyes, vinyl dimethylsiloxane, and hydrosilicone oil via the salt-template-assisted method and gradient crosslinking strategy, which have porous structures with an average pore size of 12.8 μm and a porosity of 28 %. Due to the spatial limiting threshold effect of the porosity structure, interconnected 3D polysiloxane porous networks can provide ample support for tea polyphenol thermochromic dyes and effectively prevent liquid leakage. Upon heating, the thermochromic film changes from blue to white with the K/S value decreasing from 7.69 to 0.78 and the ΔE* increasing from 2.7 to 16.1 at 610 nm, and the color-changing temperature is 42 °C. Gradient crosslinked thermochromic films exhibit excellent temperature-responsive color change properties, desirable one-side adhesion, and thermal energy storage, enabling multicolor temperature displays and temperature-controlled multilevel information transfer.
0

Impact of the Plant Growth-promoting Rhizobacterium Streptomyces saraceticus Strain 31 on Berry Quality of ‘Benifuji’ Grape: Improvements through the Reconfiguration of Fine Root Morphology and Vessel Anatomy

Chuang Ma et al.Jul 12, 2024
In an effort to mitigate the environmental impact of chemical fertilizers, plant growth-promoting rhizobacteria (PGPR) have emerged as a more sustainable alternative. Streptomyces saraceticus 31 (‘SS31’), a new strain of biocontrol bacteria, was inoculated into rhizosphere soils of ‘Benifuji’ grape to evaluate its impact on grape roots and berries. The results indicated significant improvements in soil fertility, with higher levels of organic matter, phosphorus, potassium, and nitrate nitrogen compared with those of the controls. Moreover, ‘SS31’ application elicited a notable reduction in soil pH levels, along with a substantial augmentation in the enzymatic activities of both phosphatase and invertase. The grapes treated with ‘SS31’ exhibited a notable increase in the number, length, surface area, and volume of fine roots in both 0- to 10-cm and 10- to 20-cm soil profiles. The application of ‘SS31’ resulted in the observation of greater diameter, lower density, and larger lumen area, along with increased specific hydraulic conductivity in the vessels of roots with 1- to 2-mm diameters. Despite a slight reduction in berry weight compared with that of the controls, ‘Benifuji’ grape berries displayed higher total soluble solids and lower total titratable acidity after ‘SS31’ application. Furthermore, ‘SS31’ treatment elevated the levels of volatile compounds in berries, especially fatty acid-derived compounds. A network analysis revealed a robust positive correlation between the observed improvements in grape berry quality and the morphology as well as the hydraulic conductivity of the grape fine roots. In conclusion, these findings suggest that ‘SS31’ has the potential to enhance grape root function by expanding the root absorption area and facilitating water transportation. This, in turn, may improve the flavor and aroma of ‘Benifuji’ grape berries.
0

Bioinspired, highly sensitive interlocked flexible textile pressure sensor based on multilayer SWCNTs/PVP/rGO dendritic for gesture recognition

Yongsong Tan et al.Jun 17, 2024
The development of wearable gesture recognition systems, capable of converting intricate human gestures into electric signals and graphical representations, poses significant challenges for future advancements in health monitoring and human-machine interfaces. In response to this demand, we present an approach centered on a cell-inspired, multiscale hierarchical structural piezoresistive pressure sensor designed for gesture recognition applications. The breathable, hierarchically interlocked textile pressure sensor (PFPA), featuring a SWCNTs/polyvinylpyrrolidone (PVP)/reduced graphene oxide (rGO) dendritic structure combined with a PANI/PVA cylindrical array, exhibits remarkable properties. The dendritic electrodes, composed of SWCNTs and PVP in a 1:2 ratio, maintain optimal regularity. Meanwhile, the cylindrical PANI/PVA array is meticulously engineered with a radius of 200 μm, a height of 200 μm, and an inter-cylindrical spacing of 150 μm. The PFPA demonstrates an unprecedented ultrahigh sensitivity of 80.8 kPa−1 across a pressure range of 0–5 kPa, coupled with a rapid response time of 150 ms and minimal hysteresis of 16.1 %. The PFPA also demonstrates outstanding repeatability, with no significant performance degradation observed after 4000 cycles. By correlating the bending angles of finger joints with resistance changes, we successfully integrated these sensors into a glove, enabling precise gesture recognition. The multilayer SWCNTs/PVP/rGO dendritic and PANI/PVA cylindrical array pressure sensor exhibits superior sensing performance and accurate posture capture. This demonstrates its significant potential for applications in wearable electronics and intelligent devices, marking a substantial advancement in the field.