The fluorescent probe provides a simple for detecting Cu2+ through fluorescence quenching of the Schiff‐base probes by Cu2+. However, the azine‐based probes often suffer from poor solubility and dispersibility in water and are easily interfered with by other competing ions, which significantly reduces their applicable potential. In this study, we synthesized a water‐dissoluble and highly fluorescent γ‐Cyclodextrin (γ‐CD)/2‐hydroxybenzaldehyde azine (2‐HBA) inclusion complex for Cu2+ detection. The inclusion of 2‐HBA into γ‐CD enhances its solubility in water and allows it to emit fluorescence. The as‐synthesized γ‐CD/2‐HBA probe exhibits high sensitivity for colorimetric and fluorescent detection of Cu2+, with detection limits reaching 2.72 and 1.53 nM, respectively. The results exceed most of those reported in the literature. The probe’s structure and potential mechanism were systematically analysed using the experimental and theoretical methods.