MZ
Man Zhao
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
1
h-index:
23
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-Sensitivity, Microfabricated Quantum Magnetometers With an Intelligent Solar Heating System

Yintao Ma et al.Jan 1, 2025
Atomic magnetometers, a prominent class of quantum sensors, have become increasingly significant in magnetometry, with extensive applications in cutting-edge physics, biomedical imaging, industrial inspection, and beyond. However, the power consumption of an atomic magnetometer is primarily dominated by that demanded to heat the atomic vapor cell to its operating temperature. This operating temperature determines the alkali-metal atomic density, thereby influencing the magnetic field sensitivity and overall power consumption, which poses a potential obstacle to the large-scale engineering application of atomic magnetometers. In this article, a novel heating method utilizing renewable solar energy is proposed for the first time, which can surpass the limitation of conventional heating methods in thermo-atom-based quantum sensors. By exploiting an intelligent closed-loop control system to adaptively regulate the functionalized sunlight power, this proposed method has the capability of both high heating efficiency and accuracy. The heating properties and laser absorption spectrum at different temperatures up to 180 °C are characterized substantiating the feasibility of utilizing sunlight. Moreover, a sunlight-heated, highly sensitive, microfabricated atomic magnetometer with a magnetic field sensitivity of 18 fT/Hz 1/2 is demonstrated. And the single-chamber microelectromechanical system atomic vapor cell as the key component is fabricated by utilizing deep silicon micromachining and anodic bonding techniques. This proposed technique can be further extended to all quantum sensing systems based on thermal atomic ensembles and open up new possibilities for the development of self-powered, environmentally friendly quantum sensors.