Abstract Designing and fabricating a compatible low-reflectivity electromagnetic interference (EMI) shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military. Hence, a hierarchical polyimide (PI) nonwoven fabric is fabricated by alkali treatment, in-situ growth of magnetic particles and "self-activated" electroless Ag plating process. Especially, the hierarchical impedance matching can be constructed by systematically assembling Fe 3 O 4 /Ag-loaded PI nonwoven fabric (PFA) and pure Ag-coated PI nonwoven fabric (PA), endowing it with an ultralow-reflectivity EMI shielding performance. In addition, thermal insulation of fluffy three-dimensional (3D) space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance. More importantly, the strong bonding interaction between Fe 3 O 4 , Ag, and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance. Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy, and inhibit external infrared detection.