DK
Deivasigamani Kumar
Author with expertise in Materials for Electrochemical Supercapacitors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
353
h-index:
26
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol

Devaraj Manoj et al.Jun 17, 2016
In this paper, we demonstrate and compare the synthesis of copper (Cu) and copper(I) oxide on Cu (Cu/Cu2O) nanoparticles via thermal decomposition method using a combination of oleic acid and oleylamine and oleic acid alone. Using a combination of oleic acid and oleylamine, involves a single nucleation step and control in growth of nanoparticles produces high monodispersity in shape and protects the copper nanoparticles against oxidation. X-ray diffraction (XRD) confirms the formation of single phase Cu only and X-ray photoelectron spectroscopy (XPS) evidences the formation of Cu without any formation of oxides on surfaces for over a long period of time with good stability. In view of interest in electrochemical sensors, we explore the fabrication of a novel and highly sensitive electrode and compare the electrochemical current responses for simultaneous determination of paracetamol and dopamine using Cu/Cu2O nanoparticles stabilized by oleic acid alone and Cu nanoparticles obtained from a combination of oleic acid and oleylamine. Interestingly, we observe that Cu/Cu2O nanoparticles stabilized by oleic acid alone exhibit excellent electrochemical enhancement in the peak current response towards simultaneous determination of paracetamol and dopamine with an increase in peak-peak separation of 239 mV. Differential pulse voltammetry (DPV) studies show a linear response to dopamine within the concentration from 0.02 μM to 0.159 μM with a detection limit of 3.27 nM (S/N = 3).
0

Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach

Deivasigamani Kumar et al.Jun 17, 2024
Sepsis is a life-threatening condition with high mortality rates due to delayed treatment of patients. The conventional methodology for blood diagnosis takes several hours, which suspends treatment, limits early drug administration, and affects the patient's recovery. Thus, rapid, accurate, bedside (onsite), economical, and reliable sepsis biomarker reading of the clinical sample is an emergent need for patient lifesaving. Electrochemical label-free biosensors are specific and rapid devices that are able to perform analysis at the patient's bedside; thus, they are considered an attractive methodology in a clinical setting. To reveal their full diagnostic potential, electrode architecture strategies of fabrication are highly desirable, particularly those able to preserve specific antibody-antigen attraction, restrict non-specific adsorption, and exhibit high sensitivity with a low detection limit for a target biomarker. The aim of this review is to provide state-of-the-art methodologies allowing the fabrication of ultrasensitive and highly selective electrochemical sensors for sepsis biomarkers. This review focuses on different methods of label-free biomarker sensors and discusses their advantages and disadvantages. Then, it highlights effective ways of avoiding false results and the role of molecular labels and functionalization. Recent literature on electrode materials and antibody grafting strategies is discussed, and the most efficient methodology for overcoming the non-specific attraction issues is listed. Finally, we discuss the existing electrode architecture for specific biomarker readers and promising tactics for achieving quick and low detection limits for sepsis biomarkers.