YL
Yiping Liu
Author with expertise in Multiobjective Optimization in Evolutionary Algorithms
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
467
h-index:
22
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Many-Objective Evolutionary Algorithm Using A One-by-One Selection Strategy

Yiping Liu et al.Jan 9, 2017
Most existing multiobjective evolutionary algorithms experience difficulties in solving many-objective optimization problems due to their incapability to balance convergence and diversity in the high-dimensional objective space. In this paper, we propose a novel many-objective evolutionary algorithm using a one-by-one selection strategy. The main idea is that in the environmental selection, offspring individuals are selected one by one based on a computationally efficient convergence indicator to increase the selection pressure toward the Pareto optimal front. In the one-by-one selection, once an individual is selected, its neighbors are de-emphasized using a niche technique to guarantee the diversity of the population, in which the similarity between individuals is evaluated by means of a distribution indicator. In addition, different methods for calculating the convergence indicator are examined and an angle-based similarity measure is adopted for effective evaluations of the distribution of solutions in the high-dimensional objective space. Moreover, corner solutions are utilized to enhance the spread of the solutions and to deal with scaled optimization problems. The proposed algorithm is empirically compared with eight state-of-the-art many-objective evolutionary algorithms on 80 instances of 16 benchmark problems. The comparative results demonstrate that the overall performance of the proposed algorithm is superior to the compared algorithms on the optimization problems studied in this paper.
0

A Multimodal Multiobjective Evolutionary Algorithm Using Two-Archive and Recombination Strategies

Yiping Liu et al.Nov 6, 2018
There have been few researches on solving multimodal multiobjective optimization problems, whereas they are commonly seen in real-world applications but difficult for the existing evolutionary optimizers. In this paper, we propose a novel multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. In the proposed algorithm, the properties of decision variables and the relationships among them are analyzed at first to guide the evolutionary search. Then, a general framework using two archives, i.e., the convergence and the diversity archives, is adopted to cooperatively solve these problems. Moreover, the diversity archive simultaneously employs a clustering strategy to guarantee diversity in the objective space and a niche-based clearing strategy to promote the same in the decision space. At the end of evolution process, solutions in the convergence and the diversity archives are recombined to obtain a large number of multiple Pareto optimal solutions. In addition, a set of benchmark test functions and a performance metric are designed for multimodal multiobjective optimization. The proposed algorithm is empirically compared with two state-of-the-art evolutionary algorithms on these test functions. The comparative results demonstrate that the overall performance of the proposed algorithm is significantly superior to the competing algorithms.
0

Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume

Fangzhou Zhao et al.Jul 1, 2024
Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments and carrying catalysts. Specific surface area (SSA), average pore size (APS) and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.
0

Evolutionary Multiobjective Molecule Optimization in an Implicit Chemical Space

Xin Xia et al.Jun 13, 2024
Optimization techniques play a pivotal role in advancing drug development, serving as the foundation of numerous generative methods tailored to efficiently design optimized molecules derived from existing lead compounds. However, existing methods often encounter difficulties in generating diverse, novel, and high-property molecules that simultaneously optimize multiple drug properties. To overcome this bottleneck, we propose a multiobjective molecule optimization framework (MOMO). MOMO employs a specially designed Pareto-based multiproperty evaluation strategy at the molecular sequence level to guide the evolutionary search in an implicit chemical space. A comparative analysis of MOMO with five state-of-the-art methods across two benchmark multiproperty molecule optimization tasks reveals that MOMO markedly outperforms them in terms of diversity, novelty, and optimized properties. The practical applicability of MOMO in drug discovery has also been validated on four challenging tasks in the real-world discovery problem. These results suggest that MOMO can provide a useful tool to facilitate molecule optimization problems with multiple properties.