XZ
Xiaoxu Zhao
Author with expertise in Two-Dimensional Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(34% Open Access)
Cited by:
5,238
h-index:
65
/
i10-index:
181
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries

Xiao Hai et al.Nov 25, 2021
The stabilization of transition metals as isolated centres with high areal density on suitably tailored carriers is crucial for maximizing the industrial potential of single-atom heterogeneous catalysts. However, achieving single-atom dispersions at metal contents above 2 wt% remains challenging. Here we introduce a versatile approach combining impregnation and two-step annealing to synthesize ultra-high-density single-atom catalysts with metal contents up to 23 wt% for 15 metals on chemically distinct carriers. Translation to a standardized, automated protocol demonstrates the robustness of our method and provides a path to explore virtually unlimited libraries of mono- or multimetallic catalysts. At the molecular level, characterization of the synthesis mechanism through experiments and simulations shows that controlling the bonding of metal precursors with the carrier via stepwise ligand removal prevents their thermally induced aggregation into nanoparticles. The drastically enhanced reactivity with increasing metal content exemplifies the need to optimize the surface metal density for a given application. Moreover, the loading-dependent site-specific activity observed in three distinct catalytic systems reflects the well-known complexity in heterogeneous catalyst design, which now can be tackled with a library of single-atom catalysts with widely tunable metal loadings.
0

Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes

Xinwen Peng et al.Mar 7, 2019
Porous carbon electrodes have emerged as important cathode materials for metal-air battery systems. However, most approaches for fabricating porous carbon electrodes from biomass are highly energy inefficient as they require the breaking down of the biomass and its subsequent reconstitution into powder-like carbon. Here, enzymes are explored to effectively hydrolyze the partial cellulose in bulk raw wood to form a large number of nanopores, which helps to maximally expose the inner parts of the raw wood to sufficiently dope nitrogen onto the carbon skeletons during the subsequent pyrolysis process. The resulting carbons exhibit excellent catalytic activity with respect to the oxygen reduction and oxygen evolution reactions. As-fabricated cellulose-digested, carbonized wood plates are mechanically strong, have high conductivity, and contain a crosslinked network and natural ion-transport channels and can be employed directly as metal-free electrodes without carbon paper, polymer binders, or carbon black. When used as metal-free cathodes in zinc-air batteries, they result in a specific capacity of 801 mA h g-1 and an energy density of 955 W h kg-1 with the long-term stability of the batteries being as high as 110 h. This work paves the way for the ready conversion of abundant biomass into high-value engineering products for energy-related applications.
0
Paper
Citation369
0
Save
0

Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities

Qijie Liang et al.Jan 15, 2021
Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.
0

Chemically Exfoliated VSe2 Monolayers with Room‐Temperature Ferromagnetism

Wei Yu et al.Aug 18, 2019
Abstract Among van der Waals layered ferromagnets, monolayer vanadium diselenide (VSe 2 ) stands out due to its robust ferromagnetism. However, the exfoliation of monolayer VSe 2 is challenging, not least because the monolayer flake is extremely unstable in air. Using an electrochemical exfoliation approach with organic cations as the intercalants, monolayer 1T‐VSe 2 flakes are successfully obtained from the bulk crystal at high yield. Thiol molecules are further introduced onto the VSe 2 surface to passivate the exfoliated flakes, which improves the air stability of the flakes for subsequent characterizations. Room‐temperature ferromagnetism is confirmed on the exfoliated 2D VSe 2 flakes using a superconducting quantum interference device (SQUID), X‐ray magnetic circular dichroism (XMCD), and magnetic force microscopy (MFM), where the monolayer flake displays the strongest ferromagnetic properties. Se vacancies, which can be ubiquitous in such materials, also contribute to the ferromagnetism of VSe 2 , although density functional theory (DFT) calculations show that such effect can be minimized by physisorbed oxygen molecules or covalently bound thiol molecules.
0

Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Self‐Driven Water Splitting

Zheye Zhang et al.Nov 9, 2020
Abstract Designing multifunctional catalysts with high activity, stability, and low‐cost for energy storage and conversion is a significant challenge. Herein, a trifunctional electrocatalyst is synthesized by anchoring individually dispersed Co atoms on N and S codoped hollow carbon spheres (CoSA/N,S‐HCS), which exhibits outstanding catalytic activity and stability for the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction. When equipped in liquid or flexible solid‐state rechargeable Zn–air batteries, CoSA/N,S‐HCS endows them with high power and energy density as well as excellent long‐term cycling stability, outperforming benchmark batteries based on a commercial Pt/C + RuO 2 dual catalyst system. Furthermore, a self‐driven water splitting system powered by flexible Zn–air batteries is demonstrated using CoSA/N,S‐HCS as the sole catalyst, giving a high H 2 evolution rate of 184 mmol h −1 . The state‐of‐art experimental characterizations and theoretical calculations reveal synergistic cooperation between atomically dispersed CoN 4 active sites, nearby electron‐donating S dopants, and the unique carbon support to single‐atom catalysts (SACs). This work demonstrates a general strategy to design various multifunctional SAC systems with a tailored coordination environment.
0

LAYN Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Gastric and Colon Cancers

Jinghua Pan et al.Jan 29, 2019
Background: Layilin (LAYN) is a critical gene that regulates T cell function. However, the correlations of LAYN to prognosis and tumor-infiltrating lymphocytes in different cancers remain unclear. Methods: LAYN expression was analyzed via the Oncomine database and Tumor Immune Estimation Resource (TIMER) site. We evaluated the influence of LAYN on clinical prognosis using Kaplan-Meier plotter, the PrognoScan database and Gene Expression Profiling Interactive Analysis (GEPIA). The correlations between LAYN and cancer immune infiltrates was investigated via TIMER. In addition, correlations between LAYN expression and gene marker sets of immune infiltrates were analyzed by TIMER and GEPIA. Results: A cohort (GSE17536) of colorectal cancer patients showed that high LAYN expression was associated with poorer overall survival (OS), disease-specific survival (DSS) and disease-free survival (DFS). In addition, high LAYN expression was significantly correlated with poor OS and progression-free survival (PFS) in gastric cancers (OS HR = 1.97, P = 3.6e-10; PFS HR = 2.12, P = 2.3e-10). Moreover, LYAN significantly impacts the prognosis of diverse cancers via The Cancer Genome Atlas (TCGA). Specifically, high LAYN expression was correlated with worse OS and PFS in stage 2 to 4 but not stage 1 and stage N0 gastric cancer patients (P = 0.28, 0.34; P = 0.073, 0.092). LAYN expression was positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, macrophages, neutrophils and dendritic cells (DCs) in colon adenocarcinoma (COAD) and stomach adenocarcinoma (STAD). LAYN expression showed strong correlations with diverse immune marker sets in COAD and STAD. Conclusions: These findings suggest that LAYN is correlated with prognosis and immune infiltrating levels of, including those of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and DCs in multiple cancers, especially in colon and gastric cancer patients. In addition, LAYN expression potentially contributes to regulation of tumor-associated macrophages (TAMs), DCs, T cell exhaustion and Tregs in colon and gastric cancer. These findings suggest that LAYN can be used as a prognostic biomarker for determining prognosis and immune infiltration in gastric and colon cancers.
0
Citation274
0
Save
0

Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111)

Pengfei Yang et al.Apr 8, 2020
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) have emerged as attractive platforms in next-generation nanoelectronics and optoelectronics for reducing device sizes down to a 10 nm scale. To achieve this, the controlled synthesis of wafer-scale single-crystal TMDs with high crystallinity has been a continuous pursuit. However, previous efforts to epitaxially grow TMD films on insulating substrates (e.g., mica and sapphire) failed to eliminate the evolution of antiparallel domains and twin boundaries, leading to the formation of polycrystalline films. Herein, we report the epitaxial growth of wafer-scale single-crystal MoS2 monolayers on vicinal Au(111) thin films, as obtained by melting and resolidifying commercial Au foils. The unidirectional alignment and seamless stitching of the MoS2 domains were comprehensively demonstrated using atomic- to centimeter-scale characterization techniques. By utilizing onsite scanning tunneling microscope characterizations combined with first-principles calculations, it was revealed that the nucleation of MoS2 monolayer is dominantly guided by the steps on Au(111), which leads to highly oriented growth of MoS2 along the ⟨110⟩ step edges. This work, thereby, makes a significant step toward the practical applications of MoS2 monolayers and the large-scale integration of 2D electronics.
Load More