CH
Cheng He
Author with expertise in Topological Insulators and Superconductors
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(44% Open Access)
Cited by:
2,128
h-index:
28
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Acoustic topological insulator and robust one-way sound transport

Cheng He et al.Aug 29, 2016
The acoustic analogue of a topological insulator is shown: a metamaterial exhibiting one-way sound transport along its edge. The system — a graphene-like array of stainless-steel rods — is a promising new platform for exploring topological phenomena. Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin–orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models19,20,21,22. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone15,27,28 and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.
0

Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow

Xu Ni et al.May 13, 2015
Recent explorations of topology in physical systems have led to a new paradigm of condensed matters characterized by topologically protected states and phase transition, for example, topologically protected photonic crystals enabled by magneto-optical effects. However, in other wave systems such as acoustics, topological states cannot be simply reproduced due to the absence of similar magnetics-related sound–matter interactions in naturally available materials. Here, we propose an acoustic topological structure by creating an effective gauge magnetic field for sound using circularly flowing air in the designed acoustic ring resonators. The created gauge magnetic field breaks the time-reversal symmetry, and therefore topological properties can be designed to be nontrivial with non-zero Chern numbers and thus to enable a topological sonic crystal, in which the topologically protected acoustic edge-state transport is observed, featuring robust one-way propagation characteristics against a variety of topological defects and impurities. Our results open a new venue to non-magnetic topological structures and promise a unique approach to effective manipulation of acoustic interfacial transport at will.
0
Paper
Citation237
0
Save
Load More