LA
Laurent Arnaud
Author with expertise in Impacts of Climate Change on Glaciers and Water Availability
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
247
h-index:
49
/
i10-index:
107
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Influence of grain shape on light penetration in snow

Quentin Libois et al.Nov 26, 2013
Abstract. The energy budget and the photochemistry of a snowpack depend greatly on the penetration of solar radiation in snow. Below the snow surface, spectral irradiance decreases exponentially with depth with a decay constant called the asymptotic flux extinction coefficient. As with the albedo of the snowpack, the asymptotic flux extinction coefficient depends on snow grain shape. While representing snow by a collection of spherical particles has been successful in the numerical computation of albedo, such a description poorly explains the decrease of irradiance in snow with depth. Here we explore the limits of the spherical representation. Under the assumption of geometric optics and weak absorption by snow, the grain shape can be simply described by two parameters: the absorption enhancement parameter B and the geometric asymmetry factor gG. Theoretical calculations show that the albedo depends on the ratio B/(1-gG) and the asymptotic flux extinction coefficient depends on the product B(1-gG). To understand the influence of grain shape, the values of B and gG are calculated for a variety of simple geometric shapes using ray tracing simulations. The results show that B and (1-gG) generally covary so that the asymptotic flux extinction coefficient exhibits larger sensitivity to the grain shape than albedo. In particular it is found that spherical grains propagate light deeper than any other investigated shape. In a second step, we developed a method to estimate B from optical measurements in snow. A multi-layer, two-stream, radiative transfer model, with explicit grain shape dependence, is used to retrieve values of the B parameter of snow by comparing the model to joint measurements of reflectance and irradiance profiles. Such measurements were performed in Antarctica and in the Alps yielding estimates of B between 0.8 and 2.0. In addition, values of B were estimated from various measurements found in the literature, leading to a wider range of values (1.0–9.9) which may be partially explained by the limited accuracy of the data. This work highlights the large variety of snow microstructure and experimentally demonstrates that spherical grains, with B = 1.25, are inappropriate to model irradiance profiles in snow, an important result that should be considered in further studies dedicated to subsurface absorption of short-wave radiation and snow photochemistry.
0

On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica

Romilly Stuart et al.Aug 22, 2024
Abstract. While the processes controlling pore closure are broadly understood, the physical mechanisms driving the associated elemental fractionation remains ambiguous. Previous studies have shown that the pore closure process leads to a depletion in small-sized molecules (e.g. H2, O2, Ar, Ne, He) in ice core bubbles relative to larger-sized molecules like N2. This size-dependent fractionation, identified using ice core δ(O2/N2) records, exhibits a clear anti-correlation with local summer solstice insolation, making δ(O2/N2) a valuable ice core dating tool. Mechanisms controlling this relationship are attributed to the physical properties of deep firn. In this study, we compile δ(O2/N2) records from 15 polar ice cores and show a new additional link between δ(O2/N2) and local surface temperature and/or accumulation rate. Using the Crocus snowpack model, we perform sensitivity tests to identify the response of near-surface snow properties to changes in insolation intensity, accumulation rate, and air temperature. These tests support a mechanism linked to firn grain size, such that the larger the grain size for a given density, the stronger the pore closure fractionation and, hence, the lower the δ(O2/N2) values archived in the ice. Based on both snowpack model outputs and data compilation, our findings suggest that local accumulation rate and temperature should be considered when interpreting δ(O2/N2) as a local insolation proxy.
0

Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-dataset and modelling analysis

Inès Ollivier et al.Jan 16, 2025
Abstract. Water stable isotope records in polar ice cores have been largely used to reconstruct past local temperatures and other climatic information such as evaporative source region conditions of the precipitation reaching the ice core sites. However, recent studies have identified post-depositional processes taking place at the ice sheet's surface, modifying the original precipitation signal and challenging the traditional interpretation of ice core isotopic records. In this study, we use a combination of existing and new datasets of precipitation, snow surface, and subsurface isotopic compositions (δ18O and deuterium excess (d-excess)); meteorological parameters; ERA5 reanalyses; outputs from the isotope-enabled climate model ECHAM6-wiso; and a simple modelling approach to investigate the transfer function of water stable isotopes from precipitation to the snow surface and subsurface at Dome C in East Antarctica. We first show that water vapour fluxes at the surface of the ice sheet result in a net annual sublimation of snow, from 3.1 to 3.7 mm w.e. yr−1 (water equivalent) between 2018 and 2020, corresponding to 12 % to 15 % of the annual surface mass balance. We find that the precipitation isotopic signal cannot fully explain the mean, nor the variability in the isotopic composition observed in the snow, from annual to intra-monthly timescales. We observe that the mean effect of post-depositional processes over the study period enriches the snow surface in δ18O by 3.0 ‰ to 3.3 ‰ and lowers the snow surface d-excess by 3.4 ‰ to 3.5 ‰ compared to the incoming precipitation isotopic signal. We also show that the mean isotopic composition of the snow subsurface is not statistically different from that of the snow surface, indicating the preservation of the mean isotopic composition of the snow surface in the top centimetres of the snowpack. This study confirms previous findings about the complex interpretation of the water stable isotopic signal in the snow and provides the first quantitative estimation of the impact of post-depositional processes on the snow isotopic composition at Dome C, a crucial step for the accurate interpretation of isotopic records from ice cores.
0
0
Save