Effectively controlling the adsorption and desorption of coal and mine gas is crucial to preventing harm to the environment. Therefore, this paper investigated the adsorption of coal and methane molecules from the perspective of microscopic energy through Gaussian simulation. Gaussian 09W and GaussView 5.0 software were used to construct and optimize the molecular model of four different metamorphic coals, namely lignite, sub-bituminous coal, bituminous coal, and anthracite, and their adsorption structure with methane as well as the energy, bond length, vibration frequency, infrared spectrum, and other data on the optimal structure were obtained. The binding energy of coal molecules and methane from large to small was as follows: sub-bituminous coal (7.3696 KJ/mol), lignite (6.6149 KJ/mol), bituminous coal (5.2170 KJ/mol), and anthracite (4.9510 KJ/mol). The equilibrium distance was negatively correlated with the binding energy, and the molecular structure and position of coal largely determined the binding energy. Additionally, adsorption was more likely to occur between methane molecules and hydroxyl groups. Many new vibration modes were observed during the adsorption of coal and methane molecules. This paper is of practical significance, as studying the adsorption of coal and mine gas can prevent and control mine gas outbursts and ensure safe production.