DZ
Dashan Zhang
Author with expertise in Materials for Electrochemical Supercapacitors
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ultra-wide Temperature Range Aqueous Electrolyte through Local Aggregation Anchoring Active Water towards Practical Aqueous Zinc Metal Battery

Xiaoyun Xu et al.Jun 1, 2024
The key to realizing the application of aqueous electrolytes to extreme environments lies in rational constraints on active water. Herein, a strategy for local aggregation electrolyte (LA-Zn(OTf)2) with dynamic anchoring of active H2O is proposed and achieved by precisely regulating the molecular weight and addition amount of organic long chains enriched with hydrogen-bond acceptors. The results show that the saturated vapor pressure of LA-Zn(OTf)2 is reduced by 16% at 90°C and it does not freeze at -30°C, achieving a wide operating temperature range of 120°C. In LA-Zn(OTf)2, the local aggregation of Zn2+, solvent water, and ether bonding groups form a contact ion pair (CIP) structure, which enables rapid and stable deposition of Zn metal. Moreover, a stable organic-inorganic solid electrolyte interface (SEI) is formed to suppress corrosion and hydrogen evolution. At room temperature, the Zn|LA-Zn(OTf)2|Zn symmetric cell is stably cycled for over 4000 h at 1 mA cm-2. At the extreme temperatures of 90 and -30°C, the Zn|LA-Zn(OTf)2|NVO full cells achieve stable cycling more than 1400 and 2000 cycles at 0.5 A g-1, respectively, and the capacity retention rates are 70.1% and 80.5%, respectively.
0

Liberating Lithium Ions from Polymer Matrix via Harnessing Ion‐Dipole Interaction Toward Stable Solid‐State Lithium Metal Batteries

Dashan Zhang et al.Jul 19, 2024
Abstract Although polymer electrolytes have shown great potential in solid‐state lithium metal batteries (LMBs), the polymer chain segments anchor the movement of lithium ions (Li + ), which induces the low ionic conductivity of the electrolytes and limits their application. Herein, a strategy of harnessing ion‐dipole interactions is proposed to liberate lithium ions from polymer chains. The adiponitrile (ADN) molecular dipole with strong bond dipole moment (C≡N, 11.8 × 10 −30 C m) is introduced into the polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) polymer matrix, achieving an electrolyte with high ionic conductivity of 5.1 × 10 −4 S cm −1 at 30 °C. It is demonstrated that the strong ion‐dipole interaction between C≡N and Li + weakens the ion‐dipole interaction of F···…Li + , facilitating Li + dissociation and liberating Li + from polymer chains. Moreover, a hybrid and unsaturated solvation structure is formed with the ADN molecular dipole, PVDF‐HFP polymer chain, and TFSI − anion, corresponding to the solvent‐separated ion pair (SSIP) solvation structure. Thus, the obtained electrolyte realizes high ionic conductivity and lithium‐ion transference number (0.74). Consequently, the assembled lithium symmetric cell delivers stable Li stripping/plating reversibility over 900 h. Additionally, the Li|LiFePO 4 full cells exhibit long‐term cycling stability at 0.5 C over 300 cycles with a capacity retention of 96.4% and ultralong cycling of 1000 cycles at a high rate (5 C).