ZM
Zhaohui Ma
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
3,647
h-index:
31
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-Performance All-Solid-State Lithium–Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite

Fudong Han et al.Jun 20, 2016
All-solid-state lithium–sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of ∼4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (∼3.6 mg/cm2). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries.
0

High-Voltage Aqueous Magnesium Ion Batteries

Fei Wang et al.Oct 4, 2017
Nonaqueous rechargeable magnesium (Mg) batteries suffer from the complicated and moisture-sensitive electrolyte chemistry. Besides electrolytes, the practicality of a Mg battery is also confined by the absence of high-performance electrode materials due to the intrinsically slow Mg2+ diffusion in the solids. In this work, we demonstrated a rechargeable aqueous magnesium ion battery (AMIB) concept of high energy density, fast kinetics, and reversibility. Using a superconcentration approach we expanded the electrochemical stability window of the aqueous electrolyte to 2.0 V. More importantly, two new Mg ion host materials, Li superconcentration approach we expanded the electrochemical stability window of the aqueous electrolyte to 2.0 V. More importantly, two new Mg ion host materials, Li3V2(PO4)3 and poly pyromellitic dianhydride, were developed and employed as cathode and anode electrodes, respectively. Based on comparisons of the aqueous and nonaqueous systems, the role of water is identified to be critical in the Mg ion mobility in the intercalation host but remaining little detrimental to its non-diffusion controlled process. Compared with the previously reported Mg ion cell delivers an unprecedented high power density of 6400 W kg ion cell delivers an unprecedented high power density of 6400 W kg while retaining 92% of the initial capacity after 6000 cycles, pushing the Mg ion cell to a brand new stage.