SW
Shengke Wang
Author with expertise in Deep Learning in Computer Vision and Image Recognition
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
251
h-index:
17
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Stock Market Prediction Based on Generative Adversarial Network

Kang Zhang et al.Jan 1, 2019
Deep learning has recently achieved great success in many areas due to its strong capacity in data process. For instance, it has been widely used in financial areas such as stock market prediction, portfolio optimization, financial information processing and trade execution strategies. Stock market prediction is one of the most popular and valuable area in finance. In this paper, we propose a novel architecture of Generative Adversarial Network (GAN) with the Multi-Layer Perceptron (MLP) as the discriminator and the Long Short-Term Memory (LSTM) as the generator for forecasting the closing price of stocks. The generator is built by LSTM to mine the data distributions of stocks from given data in stock market and generate data in the same distributions, whereas the discriminator designed by MLP aims to discriminate the real stock data and generated data. We choose the daily data on S&P 500 Index and several stocks in a wide range of trading days and try to predict the daily closing price. Experimental results show that our novel GAN can get a promising performance in the closing price prediction on the real data compared with other models in machine learning and deep learning.
0

Underwater object detection in noisy imbalanced datasets

Long Chen et al.May 31, 2024
Class imbalance occurs in the datasets with a disproportionate ratio of observations. The class imbalance problem drives the detection and classification systems to be more biased towards the over-represented classes while the under-represented classes may not receive sufficient learning. Previous works often deploy distribution based re-balancing approaches to address this problem. However, these established techniques do not work properly for underwater object detection where label noise commonly exists. In our experiments, we observe that the imbalanced detection problem may be caused by imbalance data distributions or label noise. To deal with these challenges, we first propose a noise removal (NR) algorithm to remove label noise in the datasets, and then propose a factor-agnostic gradient re-weighting algorithm (FAGR) to address the imbalanced detection problem. FAGR provides a rebalanced gradient to each class, which encourages the detection network to treat all the classes equally whilst minimising the detection discrepancy. Our proposed NR+FAGR framework achieves state-of-the-art (SOAT) performance on three underwater object datasets due to its high capacity in handling the class imbalance and noise issues. The source code will be made available at: https://github.com/IanDragon.