XM
Xiaohan Ma
Author with expertise in Entrepreneurship and Business Innovation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
0
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exploring the repository ofde novodesigned bifunctional antimicrobial peptides through deep learning

Ruihan Dong et al.Feb 24, 2024
Abstract Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target bio-membranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discover three bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant A. baumannii , while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.
0

Law compliance decision making for autonomous vehicles on highways

Xiaohan Ma et al.May 31, 2024
As autonomous driving advances, autonomous vehicles will share the road with human drivers. This requires autonomous vehicles to adhere to human traffic laws under safe conditions. Simultaneously, when confronted with dangerous situations, autonomous driving should also possess the capability to deviate from traffic laws to ensure safety. However, current autonomous vehicles primarily prioritize safety and collision avoidance in their decision-making and planning. This may lead to misunderstandings and distrust from human drivers in mixed traffic flow, and even accidents. To address this, this paper proposes a decoupled hierarchical framework for compliance safety decision-making. The framework primarily consists of two layers: the decision-making layer and the motion planning layer. In the decision-making layer, a candidate behavior set is constructed based on the scenario, and a dual layer admission assessment is utilized to filter out unsafe and non-compliant behaviors from the candidate sets. Subsequently, the optimal behavior is selected as the decision behavior according to the designed evaluation metrics. The decision-making layer ensures that the vehicle can meet lane safety requirements and comply with static traffic laws. In the motion planning layer, the surrounding vehicles and the road are modeled as safety potential fields and traffic laws potential fields. Combining the optimal decision behavior, they are incorporated into the cost function of the model predictive control to achieve compliant and safe trajectory planning. The planning layer ensures that the vehicle meets trajectory safety requirements and complies with dynamic traffic laws under safe conditions. Finally, four typical scenarios are used to evaluate the effectiveness of the proposed method. The results indicate that the proposed method can ensure compliance in safe conditions while also temporarily deviating from traffic laws in emergency situations to ensure safety.