JC
Junsheng Cheng
Author with expertise in Machine Fault Diagnosis and Prognostics
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(11% Open Access)
Cited by:
1,615
h-index:
26
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A roller bearing fault diagnosis method based on EMD energy entropy and ANN

Yang Yu et al.Dec 28, 2005
According to the non-stationary characteristics of roller bearing fault vibration signals, a roller bearing fault diagnosis method based on empirical mode decomposition (EMD) energy entropy is put forward in this paper. Firstly, original acceleration vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs), then the concept of EMD energy entropy is proposed. The analysis results from EMD energy entropy of different vibration signals show that the energy of vibration signal will change in different frequency bands when bearing fault occurs. Therefore, to identify roller bearing fault patterns, energy feature extracted from a number of IMFs that contained the most dominant fault information could serve as input vectors of artificial neural network. The analysis results from roller bearing signals with inner-race and out-race faults show that the diagnosis approach based on neural network by using EMD to extract the energy of different frequency bands as features can identify roller bearing fault patterns accurately and effectively and is superior to that based on wavelet packet decomposition and reconstruction.
0
Paper
Citation504
0
Save
0

Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines

Jinde Zheng et al.Sep 17, 2016
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
0
Paper
Citation320
0
Save
0

Mirror Target YOLO: An Improved YOLOv8 Method with Indirect Vision for Heritage Buildings Fire Detection

Jian Liang et al.Jan 1, 2025
Fires can cause severe damage to heritage buildings, making timely fire detection essential. Traditional dense cabling and drilling can harm these structures, so reducing the number of cameras to minimize such impact is challenging. Additionally, avoiding false alarms due to noise sensitivity and preserving the expertise of managers in fire-prone areas is crucial. To address these needs, we propose a fire detection method based on indirect vision, called Mirror Target YOLO (MITA-YOLO). MITA-YOLO integrates indirect vision deployment and an enhanced detection module. It uses mirror angles to achieve indirect views, solving issues with limited visibility in irregular spaces and aligning each indirect view with the target monitoring area. The Target-Mask module is designed to automatically identify and isolate the indirect vision areas in each image, filtering out non-target areas. This enables the model to inherit managers' expertise in assessing fire-risk zones, improving focus and resistance to interference in fire detection. In our experiments, we created an 800-image fire dataset with indirect vision. Results show that MITA-YOLO significantly reduces camera requirements while achieving superior detection performance compared to other mainstream models.
0

All time-scale decomposition method and its application in gear fault diagnosis

Zhengyang Cheng et al.Nov 15, 2024
Adaptive signal decomposition methods, especially without parameters, have become a popular way of diagnosing mechanical faults due to their capability to process mechanical vibration signals adaptively. Empirical mode decomposition (EMD), local mean decomposition (LMD), and local characteristic-scale decomposition (LCD) are typical parameterless adaptive signal decomposition methods currently applied to mechanical fault diagnosis. All of these methods use extreme points to construct baselines, and the mono-component signals are decomposed from an original signal by multiple sift. However, since these methods define time-scale parameters only through extreme points, they are prone to lose the local feature information of an original signal and lead to mode mixing. Aiming at the above problems, the time-scale parameters is defined by using extreme points and zero crossing points simultaneously in this paper. Therefore, we propose a new adaptive signal decomposition method called all time-scale decomposition (ATD). A complex signal can be adaptively decomposed into multiple independent all time-scale components by the ATD method. The baselines of ATD are constructed jointly by extreme points and zero crossing points, so ATD can extract more local feature information of a signal to suppress the mode mixing. First, the principle of ATD is proposed and the method of determining zero crossing points is introduced in this paper. Then, an empirical formula for compensation factor used to determine zero crossing points is deduced. Finally, ATD is verified by the simulation signals and gear signals, respectively. The results indicate that ATD has stronger mode mixing suppression capability and decomposition performance than EMD, LMD, and LCD, and it can be effectively used for gear fault diagnosis.