Against the background of carbon peak and carbon neutralization, in order to solve the problem of poor flexibility of integrated energy systems and wind power consumption while improving the potential of hydrogen energy emission reduction, this study proposes an integrated energy system that takes into account the coupling of concentrating solar power (CSP), hydrogen-doped combustion, and power-to-gas (P2G) conversion. Firstly, a mathematical model of a CSP-CHP unit is established by introducing a CSP power station, aiming at the defect of the “heat to power” mode in the CHP system. Secondly, the energy consumption of P2G hydrogen energy production is satisfied by surplus wind power. The utilization stage of hydrogen energy is divided into supply CHP combustion and CO2 methanation, forming a CSP-P2G-HCHP collaborative framework and establishing an IES low-carbon economic dispatch model with CSP-P2G-HCHP. At the same time, the carbon trading mechanism is introduced to constrain the carbon emissions of the system. Finally, an optimization strategy with the minimum sum of the operation and maintenance cost, the energy purchase cost, the wind curtailment cost, and the carbon emission cost as the objective function is proposed, and the CPLEX solver is used to solve and carry out multi-case analysis. The simulation results show that the carbon emissions are reduced by 6.34%, the wind curtailment cost is reduced by 52.2%, and the total cost is reduced by 1.67%. The model takes into account the carbon reduction effect and operating efficiency and effectively improves the new energy consumption capacity.