JS
Joachim Sann
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(23% Open Access)
Cited by:
3,485
h-index:
39
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode

Sibylle Wenzel et al.Mar 10, 2016
The very high ionic conductivity of Li10GeP2S12 (LGPS) makes it a potential solid electrolyte for lithium all-solid-state batteries. Besides the high ionic conductivity, another key requirement is the stability of the solid electrolyte against degradation reactions with the electrodes; here, we analyze the reaction of LGPS with lithium metal. In situ X-ray photoelectron spectroscopy (XPS), in combination with time-resolved electrochemical measurements offers detailed information on the chemical reactions at the Li/LGPS interface. The decomposition of Li10GeP2S12 leads to the formation of an interphase composed of Li3P, Li2S, and Li–Ge alloy, which is in perfect agreement with theoretical predictions, and an increase of the interfacial resistance. These results highlight the necessity to perform long-term, time-resolved electrochemical measurements when evaluating potential new solid electrolytes for solid-state batteries. The kinetics of this interphase growth—comparable to SEI formation on lithium anodes in liquid electrolytes—seems to be governed by diffusion across the interphase, as a square root time dependence is observed.
0
Citation673
0
Save
0

Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy

Sibylle Wenzel et al.Jun 18, 2015
Interfacial reactions of solid electrolytes play an important role in all-solid-state batteries. The interface resistances—describing charge transfer between electrode and solid electrolyte—and the cycle stability of the battery depend on the chemical and physical properties of the interfaces. As buried interfaces in all-solid-state batteries are difficult to investigate, the knowledge on interfacial reactions and the interfacial kinetics is poor—especially in case of the interface between solid electrolytes and alkali metal. Here, a simple and straightforward technique for the investigation of the formation of an interfacial reaction zone (interphase) at the surface of a solid electrolyte is presented. The key concept is to use the internal argon ion sputter gun in a standard lab-scale photoelectron spectrometer to deposit thin metal films (e.g. lithium) on the sample surface and to study the reaction between metal and solid electrolyte by photoelectron spectroscopy directly after deposition. As an example for the formation of interphases on solid electrolyte materials, lithium is deposited on lithium lanthanum titanate (LLTO), and the reaction is observed by XPS in situ. The obtained spectra show the formation of reduced titanium ions and titanium metal due to the reaction of LLTO with Li—i.e. by lithium insertion. The presented experimental approach can be used for the deposition of virtually any metal on the sample and can be easily adapted to a wide range of applications such as enhancing the electronic conductivity of samples in situ, studies of electronic contact properties in devices, detailed analysis of emission depth distribution functions for thin overlayers or to create internal binding energy standards.
0

Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes

Pascal Hartmann et al.Oct 3, 2013
We report on the transport properties of lithium ion conducting glass ceramics represented by the general composition Li1+x–yAlx3+My5+M2–x–y4+(PO4)3 with NASICON-type structure and their stability in contact with lithium metal. In particular, solid electrolyte phases with M = Ge, M = Ti, Ge, and M = Ti, Ta were investigated. AC impedance spectroscopy and DC polarization measurements were applied to determine the conductivity as a function of temperature, and to extract the partial electronic conductivity. The maximum total conductivity at room temperature was found to be about 4 × 10–4 S/cm for the solely Ge containing sample. We demonstrate that the combination of vacuum-based lithium thin film deposition and X-ray photoelectron spectroscopy (XPS) is well suited to study the reactivity of the solid electrolyte membranes in contact with lithium. As a major result, we show that none of the materials investigated is stable in contact with lithium metal, and we discuss the reactive interaction between solid electrolytes and Li metal in terms of the formation of a mixed (ionic/electronic) conducting interphase (MCI) following the well-known SEI concept in liquid electrolytes.
0

Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte

Sibylle Wenzel et al.Dec 29, 2015
The properties of the interface between solid electrolytes and electrode materials are of vital importance for the performance of all solid-state batteries (ASSB). Unwanted reactions between alkali metal electrodes and the solid electrolyte can lead to the formation of compounds that either facilitate or block the ion transfer kinetics. In particular for lithium solid electrolytes in the Li2S–P2S5 system with very high lithium ion conductivity only little is known about interfacial reactions with lithium metal. Here we monitor the formation of an interphase between Li7P3S11 and lithium metal by a combined analytical approach, comprising in situ photoelectron spectroscopy and time-dependent electrochemical impedance spectroscopy. Utilizing a self-developed XPS peak fit model for Li7P3S11, we identify the components of this interphase, discuss its properties and develop a qualitative model, which shows that the reaction between electrolyte and lithium metal, and hence, the interphase growth, is limited to a few nm. The solid electrolyte being used is a highly crystalline form of the superionic conductor Li7P3S11 without any residual glassy phase, and the synthesis of this Li7P3S11 phase is also reported.
0
Citation418
0
Save
0

Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry

Felix Walther et al.Apr 29, 2019
All-solid-state lithium-ion batteries (ASSBs) are expected to represent a future alternative compared to conventional lithium-ion batteries with liquid electrolytes (LIBs). The excellent performance of today's LIBs relies to a large extent on the development of liquid electrolytes that form stable, or at least slowly degrading, interfaces (interphases) with both anodes and cathodes. This has not yet been achieved in ASSBs, and degradation of anode and cathode interfaces of solid electrolytes (SE) is one of the key issues to be solved. Unlike investigations of liquid/solid interfaces, the degradation of interfaces between the solid electrodes and the SE is challenging since (i) solid/solid interfaces are less easily accessed analytically, (ii) interface compounds may contribute only in very low concentrations to spectroscopic or spectrometric data, and (iii) a high spatial resolution is required to determine the local component distribution. Typically, solid/solid interface investigations are primarily based on electrochemical experiments, diffraction studies, electron microscopy, or on theoretical calculations to obtain sufficient information. Interestingly, the prospects of recent advanced analytical tools such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are not fully exploited yet; therefore, we demonstrate in this paper that ToF-SIMS can provide valuable insights into the interphase composition and microstructure of ASSBs. For this purpose, we combine local compositional information from ToF-SIMS and complementary X-ray photoelectron spectroscopy measurements to characterize and visualize the degradation mechanism in the LiNi0.6Co0.2Mn0.2O2/Li6PS5Cl-composite cathode of an ASSB. Our results indicate that sulfates and phosphates play an important role in the formation of a solid electrolyte interface (SEI), whereas transition-metal chlorides, phosphides, and sulfides can be neglected. Furthermore, to the best of our knowledge, we show for the first time the local structure and morphology of the SEI layer on the basis of information about the chemical composition using ToF-SIMS analysis.
0

A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery

Pascal Hartmann et al.Jan 1, 2013
This work reports on the cell chemistry of a room temperature sodium–oxygen battery using an electrolyte of diethylene glycol dimethyl ether (diglyme) and sodium trifluoromethanesulfonate (NaSO3CF3, sodium triflate). Different from lithium–oxygen cells, where lithium peroxide is found as the discharge product, sodium superoxide (NaO2) is formed in the present cell, with overpotentials as low as 100 mV during charging. Several analytical methods are used to follow the cell reaction during discharge and charge. Changes in structure and morphology are studied by SEM and XRD. It is found that NaO2 grows as cubic particles with feed sizes in the range of 10–50 μm; upon recharge the particles consecutively decompose. Pressure monitoring during galvanostatic cycling shows that the coulombic efficiency (e−/O2) for discharge and charge is approx. 1.0, the expected value for NaO2 formation. Also optical spectroscopy is identified as a convenient and useful tool to follow the discharge–charge process. The maximum discharge capacity is found to be limited by oxygen transport within the electrolyte soaked carbon fiber cathode and pore blocking near the oxygen interface is observed. Finally electrolyte decomposition and sodium dendrite growth are identified as possible reasons for the limited capacity retention of the cell. The occurrence of undesired side reactions is analyzed by DEMS measurements during cycling as well as by post mortem XPS investigations.
Load More