BC
Bin Cui
Author with expertise in Recommender System Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(23% Open Access)
Cited by:
1,482
h-index:
50
/
i10-index:
174
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Contrastive Learning for Sequential Recommendation

Xu Xie et al.May 1, 2022
Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a user's dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent advances of contrastive learning techniques in the computer version, we propose a novel multi-task model called \textbf{C}ontrastive \textbf{L}earning for \textbf{S}equential \textbf{Rec}ommendation~(\textbf{CL4SRec}). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.
0
Citation313
0
Save
0

Challenging the long tail recommendation

Hongzhi Yin et al.May 1, 2012
The success of "infinite-inventory" retailers such as Amazon.com and Netflix has been largely attributed to a "long tail" phenomenon. Although the majority of their inventory is not in high demand, these niche products, unavailable at limited-inventory competitors, generate a significant fraction of total revenue in aggregate. In addition, tail product availability can boost head sales by offering consumers the convenience of "one-stop shopping" for both their mainstream and niche tastes. However, most of existing recommender systems, especially collaborative filter based methods, can not recommend tail products due to the data sparsity issue. It has been widely acknowledged that to recommend popular products is easier yet more trivial while to recommend long tail products adds more novelty yet it is also a more challenging task. In this paper, we propose a novel suite of graph-based algorithms for the long tail recommendation. We first represent user-item information with undirected edge-weighted graph and investigate the theoretical foundation of applying Hitting Time algorithm for long tail item recommendation. To improve recommendation diversity and accuracy, we extend Hitting Time and propose efficient Absorbing Time algorithm to help users find their favorite long tail items. Finally, we refine the Absorbing Time algorithm and propose two entropy-biased Absorbing Cost algorithms to distinguish the variation on different user-item rating pairs, which further enhances the effectiveness of long tail recommendation. Empirical experiments on two real life datasets show that our proposed algorithms are effective to recommend long tail items and outperform state-of-the-art recommendation techniques.
0
Paper
Citation241
0
Save
0

Adapting to User Interest Drift for POI Recommendation

Hongzhi Yin et al.Jun 14, 2016
Point-of-Interest recommendation is an essential means to help people discover attractive locations, especially when people travel out of town or to unfamiliar regions. While a growing line of research has focused on modeling user geographical preferences for POI recommendation, they ignore the phenomenon of user interest drift across geographical regions, i.e., users tend to have different interests when they travel in different regions, which discounts the recommendation quality of existing methods, especially for out-of-town users. In this paper, we propose a latent class probabilistic generative model Spatial-Temporal LDA (ST-LDA) to learn region-dependent personal interests according to the contents of their checked-in POIs at each region. As the users' check-in records left in the out-of-town regions are extremely sparse, ST-LDA incorporates the crowd's preferences by considering the public's visiting behaviors at the target region. To further alleviate the issue of data sparsity, a social-spatial collective inference framework is built on ST-LDA to enhance the inference of region-dependent personal interests by effectively exploiting the social and spatial correlation information. Besides, based on ST-LDA, we design an effective attribute pruning (AP) algorithm to overcome the curse of dimensionality and support fast online recommendation for large-scale POI data. Extensive experiments have been conducted to evaluate the performance of our ST-LDA model on two real-world and large-scale datasets. The experimental results demonstrate the superiority of ST-LDA and AP, compared with the state-of-the-art competing methods, by making more effective and efficient mobile recommendations.
0

PointCLIP: Point Cloud Understanding by CLIP

Renrui Zhang et al.Jun 1, 2022
Recently, zero-shot and few-shot learning via Contrastive Vision-Language Pre-training (CLIP) have shown inspirational performance on 2D visual recognition, which learns to match images with their corresponding texts in open-vocabulary settings. However, it remains under explored that whether CLIP, pre-trained by large-scale image-text pairs in 2D, can be generalized to 3D recognition. In this paper, we identify such a setting is feasible by proposing PointCLIP, which conducts alignment between CLIP-encoded point clouds and 3D category texts. Specifically, we encode a point cloud by projecting it onto multi-view depth maps and aggregate the view-wise zero-shot prediction in an end-to-end manner, which achieves efficient knowledge transfer from 2D to 3D. We further design an inter-view adapter to better extract the global feature and adaptively fuse the 3D few-shot knowledge into CLIP pre-trained in 2D. By just fine-tuning the adapter under few-shot settings, the performance of PointCLIP could be largely improved. In addition, we observe the knowledge complementary property between PointCLIP and classical 3D-supervised networks. Via simple ensemble during inference, PointCLIP contributes to favorable performance enhancement over state-of-the-art 3D networks. Therefore, PointCLIP is a promising alternative for effective 3D point cloud understanding under low data regime with marginal resource cost. We conduct thorough experiments on Model-NetlO, ModelNet40 and ScanObjectNN to demonstrate the effectiveness of PointCLIP. Code is available at https://github.com/ZrrSkywalker/PointCLIP.
0
Citation200
0
Save
0

Heterogeneity-aware Distributed Parameter Servers

Jiawei Jiang et al.May 9, 2017
We study distributed machine learning in heterogeneous environments in this work. We first conduct a systematic study of existing systems running distributed stochastic gradient descent; we find that, although these systems work well in homogeneous environments, they can suffer performance degradation, sometimes up to 10x, in heterogeneous environments where stragglers are common because their synchronization protocols cannot fit a heterogeneous setting. Our first contribution is a heterogeneity-aware algorithm that uses a constant learning rate schedule for updates before adding them to the global parameter. This allows us to suppress stragglers' harm on robust convergence. As a further improvement, our second contribution is a more sophisticated learning rate schedule that takes into consideration the delayed information of each update. We theoretically prove the valid convergence of both approaches and implement a prototype system in the production cluster of our industrial partner Tencent Inc. We validate the performance of this prototype using a range of machine-learning workloads. Our prototype is 2-12x faster than other state-of-the-art systems, such as Spark, Petuum, and TensorFlow; and our proposed algorithm takes up to 6x fewer iterations to converge.
0

Mitigating Negative Transfer in Cross-Domain Recommendation via Knowledge Transferability Enhancement

Zijian Song et al.Aug 24, 2024
Cross-Domain Recommendation (CDR) is a promising technique to alleviate data sparsity by transferring knowledge across domains. However, the negative transfer issue in the presence of numerous domains has received limited attention. Most existing methods transfer all information from source domains to the target domain without distinction. This introduces harmful noise and irrelevant features, resulting in suboptimal performance. Although some methods decompose user features into domain-specific and domain-shared components, they fail to consider other causes of negative transfer. Worse still, we argue that simple feature decomposition is insufficient for multi-domain scenarios. To bridge this gap, we propose TrineCDR, the TRIple-level kNowledge transferability Enhanced model for multi-target CDR. Unlike previous methods, TrineCDR captures single domain and targeted cross-domain embeddings to serve multi-domain recommendation. For the latter, we identify three fundamental causes of negative transfer, ranging from micro to macro perspectives, and correspondingly enhance knowledge transferability at three different levels: the feature level, the interaction level, and the domain level. Through these efforts, TrineCDR effectively filters out noise and irrelevant information from source domains, leading to more comprehensive and accurate representations in the target domain. We extensively evaluate the proposed model on real-world datasets, sampled from Amazon and Douban, under both dual-target and multi-target scenarios. The experimental results demonstrate the superiority of TrineCDR over state-of-the-art cross-domain recommendation methods.
Load More