PM
Pierrick Martin
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
1,199
h-index:
28
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Fermi Galactic Center GeV Excess and Implications for Dark Matter

M. Ackermann et al.May 1, 2017
The region around the Galactic center (GC) is now well established to be brighter at energies of a few GeV than expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 years of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties in the excess properties due to resolved point sources of gamma rays. The Galactic center is of particular interest as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter particles. However, control regions along the Galactic plane, where a dark-matter signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross section as function of particle mass and annihilation channel.
0

GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THEFERMILARGE AREA TELESCOPE

M. Ackermann et al.Aug 7, 2012
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1–100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L0.1–100 GeV/L1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L0.1–100 GeV/L8–1000 μm) = −4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M☉ yr−1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4–2.4 × 10−6 ph cm−2 s−1 sr−1 (4%–23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ∼10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
0

DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

Fabio Acero et al.Apr 1, 2016
ABSTRACT Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.
0

Extended gamma-ray emission from particle escape in pulsar wind nebulae. Application to HESS J1809-193 and HESS J1825-137

Pierrick Martin et al.Jul 24, 2024
There is growing evidence from gamma-ray observations at high and very high energies that particle escape is a key aspect shaping the morphological properties of pulsar wind nebulae (PWNe) at various evolutionary stages. We aim to provide a simple model for the gamma-ray emission from these objects including the transport of particles across the different components of the system. We applied it to sources HESS J1809$-$193 and HESS J1825$-$137. We developed a multi-zone framework applicable to dynamically young PWNe, taking into account the diffusive escape of relativistic electron-positron pairs out of the nebula into the parent supernova remnant (SNR) and their confinement downstream of the magnetic barrier of the forward shock until an eventual release into the surrounding interstellar medium (ISM). For a wide range of turbulence properties in the nebula, the GeV-TeV inverse-Compton radiation from pairs that escaped into the remnant can be a significant if not dominant contribution to the emission from the system. It may dominate the pion-decay radiation from cosmic rays accelerated at the forward shock and advected downstream of it. In the TeV-PeV range, the contribution from particles escaped into the ISM can exceed by far that of the SNR+PWN components. Applied to HESS J1809$-$193 and HESS J1825$-$137, we found that spatially extended GeV-TeV emission components can be accounted for mostly from particles escaped into the ISM, while morphologically more compact components above $50-100$ are ascribed to the PWNe. In these two cases, the model suggests high turbulence in the nebula and a forward shock accelerating cosmic rays up to $ at most. The model provides the temporal and spectral properties of the flux of particles originally energized by the pulsar wind and ultimately released in the ISM. It can be used to constrain the transport of particles in the vicinity of pulsar-PWN-SNR systems from broadband gamma-ray observations, or in studies of the contribution of pulsar-related systems to the local positron flux.