LW
Lei Wang
Author with expertise in Face Recognition and Dimensionality Reduction Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(52% Open Access)
Cited by:
5,195
h-index:
63
/
i10-index:
272
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In defense of soft-assignment coding

Lingqiao Liu et al.Nov 1, 2011
In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable to the state-of-the-art, leading to a coding scheme which perfectly combines computational efficiency and classification performance. To achieve this, we revisit soft-assignment coding from two key aspects: classification performance and probabilistic interpretation. For the first aspect, we argue that the inferiority of soft-assignment coding is due to its neglect of the underlying manifold structure of local features. To remedy this, we propose a simple modification to localize the soft-assignment coding, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage. For the second aspect, based on our probabilistic interpretation of the soft-assignment coding, we give a probabilistic explanation to the magic max-pooling operation, which has successfully been used by sparse or local coding schemes but still poorly understood. This probability explanation motivates us to develop a new mix-order max-pooling operation which further improves the classification performance of the proposed coding scheme. As experimentally demonstrated, the localized soft-assignment coding achieves the state-of-the-art classification performance with the highest computational efficiency among the existing coding schemes.
0

Pruning and quantization for deep neural network acceleration: A survey

Tailin Liang et al.Jul 21, 2021
Deep neural networks have been applied in many applications exhibiting extraordinary abilities in the field of computer vision. However, complex network architectures challenge efficient real-time deployment and require significant computation resources and energy costs. These challenges can be overcome through optimizations such as network compression. Network compression can often be realized with little loss of accuracy. In some cases accuracy may even improve. This paper provides a survey on two types of network compression: pruning and quantization. Pruning can be categorized as static if it is performed offline or dynamic if it is performed at run-time. We compare pruning techniques and describe criteria used to remove redundant computations. We discuss trade-offs in element-wise, channel-wise, shape-wise, filter-wise, layer-wise and even network-wise pruning. Quantization reduces computations by reducing the precision of the datatype. Weights, biases, and activations may be quantized typically to 8-bit integers although lower bit width implementations are also discussed including binary neural networks. Both pruning and quantization can be used independently or combined. We compare current techniques, analyze their strengths and weaknesses, present compressed network accuracy results on a number of frameworks, and provide practical guidance for compressing networks.
0

3D conditional generative adversarial networks for high-quality PET image estimation at low dose

Yan Wang et al.Mar 20, 2018
Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures.
0

AdaBoost with SVM-based component classifiers

Xuchun Li et al.Sep 17, 2007
The use of SVM (Support Vector Machine) as component classifier in AdaBoost may seem like going against the grain of the Boosting principle since SVM is not an easy classifier to train. Moreover, Wickramaratna et al. [2001. Performance degradation in boosting. In: Proceedings of the Second International Workshop on Multiple Classifier Systems, pp. 11–21] show that AdaBoost with strong component classifiers is not viable. In this paper, we shall show that AdaBoost incorporating properly designed RBFSVM (SVM with the RBF kernel) component classifiers, which we call AdaBoostSVM, can perform as well as SVM. Furthermore, the proposed AdaBoostSVM demonstrates better generalization performance than SVM on imbalanced classification problems. The key idea of AdaBoostSVM is that for the sequence of trained RBFSVM component classifiers, starting with large σ values (implying weak learning), the σ values are reduced progressively as the Boosting iteration proceeds. This effectively produces a set of RBFSVM component classifiers whose model parameters are adaptively different manifesting in better generalization as compared to AdaBoost approach with SVM component classifiers using a fixed (optimal) σ value. From benchmark data sets, we show that our AdaBoostSVM approach outperforms other AdaBoost approaches using component classifiers such as Decision Trees and Neural Networks. AdaBoostSVM can be seen as a proof of concept of the idea proposed in Valentini and Dietterich [2004. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research 5, 725–775] that Adaboost with heterogeneous SVMs could work well. Moreover, we extend AdaBoostSVM to the Diverse AdaBoostSVM to address the reported accuracy/diversity dilemma of the original Adaboost. By designing parameter adjusting strategies, the distributions of accuracy and diversity over RBFSVM component classifiers are tuned to maintain a good balance between them and promising results have been obtained on benchmark data sets.
0

On Similarity Preserving Feature Selection

Zheng Zhao et al.Oct 18, 2011
In the literature of feature selection, different criteria have been proposed to evaluate the goodness of features. In our investigation, we notice that a number of existing selection criteria implicitly select features that preserve sample similarity, and can be unified under a common framework. We further point out that any feature selection criteria covered by this framework cannot handle redundant features, a common drawback of these criteria. Motivated by these observations, we propose a new "Similarity Preserving Feature Selection" framework in an explicit and rigorous way. We show, through theoretical analysis, that the proposed framework not only encompasses many widely used feature selection criteria, but also naturally overcomes their common weakness in handling feature redundancy. In developing this new framework, we begin with a conventional combinatorial optimization formulation for similarity preserving feature selection, then extend it with a sparse multiple-output regression formulation to improve its efficiency and effectiveness. A set of three algorithms are devised to efficiently solve the proposed formulations, each of which has its own advantages in terms of computational complexity and selection performance. As exhibited by our extensive experimental study, the proposed framework achieves superior feature selection performance and attractive properties.
0
Citation305
0
Save
0

Late Fusion Incomplete Multi-View Clustering

Xinwang Liu et al.Nov 6, 2018
Incomplete multi-view clustering optimally integrates a group of pre-specified incomplete views to improve clustering performance. Among various excellent solutions, multiple kernel $k$k-means with incomplete kernels forms a benchmark, which redefines the incomplete multi-view clustering as a joint optimization problem where the imputation and clustering are alternatively performed until convergence. However, the comparatively intensive computational and storage complexities preclude it from practical applications. To address these issues, we propose Late Fusion Incomplete Multi-view Clustering (LF-IMVC) which effectively and efficiently integrates the incomplete clustering matrices generated by incomplete views. Specifically, our algorithm jointly learns a consensus clustering matrix, imputes each incomplete base matrix, and optimizes the corresponding permutation matrices. We develop a three-step iterative algorithm to solve the resultant optimization problem with linear computational complexity and theoretically prove its convergence. Further, we conduct comprehensive experiments to study the proposed LF-IMVC in terms of clustering accuracy, running time, advantages of late fusion multi-view clustering, evolution of the learned consensus clustering matrix, parameter sensitivity and convergence. As indicated, our algorithm significantly and consistently outperforms some state-of-the-art algorithms with much less running time and memory.
0

Multiple Kernel k-means with Incomplete Kernels

Xinwang Liu et al.Jan 1, 2019
Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernel matrices to improve clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of base kernel matrices are absent. This paper proposes two simple yet effective algorithms to address this issue. Different from existing approaches where incomplete kernel matrices are first imputed and a standard MKC algorithm is applied to the imputed kernel matrices, our first algorithm integrates imputation and clustering into a unified learning procedure. Specifically, we perform multiple kernel clustering directly with the presence of incomplete kernel matrices, which are treated as auxiliary variables to be jointly optimized. Our algorithm does not require that there be at least one complete base kernel matrix over all the samples. Also, it adaptively imputes incomplete kernel matrices and combines them to best serve clustering. Moreover, we further improve this algorithm by encouraging these incomplete kernel matrices to mutually complete each other. The three-step iterative algorithm is designed to solve the resultant optimization problems. After that, we theoretically study the generalization bound of the proposed algorithms. Extensive experiments are conducted on 13 benchmark data sets to compare the proposed algorithms with existing imputation-based methods. Our algorithms consistently achieve superior performance and the improvement becomes more significant with increasing missing ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering.
0

Global and Local Structure Preservation for Feature Selection

Xinwang Liu et al.Nov 19, 2013
The recent literature indicates that preserving global pairwise sample similarity is of great importance for feature selection and that many existing selection criteria essentially work in this way. In this paper, we argue that besides global pairwise sample similarity, the local geometric structure of data is also critical and that these two factors play different roles in different learning scenarios. In order to show this, we propose a global and local structure preservation framework for feature selection (GLSPFS) which integrates both global pairwise sample similarity and local geometric data structure to conduct feature selection. To demonstrate the generality of our framework, we employ methods that are well known in the literature to model the local geometric data structure and develop three specific GLSPFS-based feature selection algorithms. Also, we develop an efficient optimization algorithm with proven global convergence to solve the resulting feature selection problem. A comprehensive experimental study is then conducted in order to compare our feature selection algorithms with many state-of-the-art ones in supervised, unsupervised, and semisupervised learning scenarios. The result indicates that: 1) our framework consistently achieves statistically significant improvement in selection performance when compared with the currently used algorithms; 2) in supervised and semisupervised learning scenarios, preserving global pairwise similarity is more important than preserving local geometric data structure; 3) in the unsupervised scenario, preserving local geometric data structure becomes clearly more important; and 4) the best feature selection performance is always obtained when the two factors are appropriately integrated. In summary, this paper not only validates the advantages of the proposed GLSPFS framework but also gains more insight into the information to be preserved in different feature selection tasks.
0
Citation240
0
Save
Load More