HZ
Hanyu Zhang
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(39% Open Access)
Cited by:
1,461
h-index:
37
/
i10-index:
103
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches

Bin Liu et al.Aug 17, 2019
Abstract As the first web server to analyze various biological sequences at sequence level based on machine learning approaches, many powerful predictors in the field of computational biology have been developed with the assistance of the BioSeq-Analysis. However, the BioSeq-Analysis can be only applied to the sequence-level analysis tasks, preventing its applications to the residue-level analysis tasks, and an intelligent tool that is able to automatically generate various predictors for biological sequence analysis at both residue level and sequence level is highly desired. In this regard, we decided to publish an important updated server covering a total of 26 features at the residue level and 90 features at the sequence level called BioSeq-Analysis2.0 (http://bliulab.net/BioSeq-Analysis2.0/), by which the users only need to upload the benchmark dataset, and the BioSeq-Analysis2.0 can generate the predictors for both residue-level analysis and sequence-level analysis tasks. Furthermore, the corresponding stand-alone tool was also provided, which can be downloaded from http://bliulab.net/BioSeq-Analysis2.0/download/. To the best of our knowledge, the BioSeq-Analysis2.0 is the first tool for generating predictors for biological sequence analysis tasks at residue level. Specifically, the experimental results indicated that the predictors developed by BioSeq-Analysis2.0 can achieve comparable or even better performance than the existing state-of-the-art predictors.
0
Citation320
0
Save
0

Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization

Eric Benson et al.Dec 27, 2017
We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS2) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS2 nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS2 functionalized with the most electron donating functional group (p-(CH3CH2)2NPh-MoS2) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS2. The p-(CH3CH2)2NPh-MoS2 is more stable than unfunctionalized metallic MoS2 and outperforms unfunctionalized metallic MoS2 for continuous H2 evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS2 nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS2 nanosheet. The functional groups preserve the metallic nature of the MoS2 nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS2 nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS2 and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.
0

Flexible Nitrite Supply Alternative for Mainstream Anammox: Advances in Enhancing Process Stability

Rui Du et al.Apr 28, 2020
Anaerobic ammonium oxidation (anammox) has attracted extensive attention as a potentially sustainable and economical municipal wastewater treatment process. However, its large-scale application is limited by unstable nitrite (NO2–-N) production and associated excessive nitrate (NO3–-N) residue. Thus, our study sought to evaluate an efficient alternative to the current nitritation-based anammox process substituting NO2–-N supply by partial-denitrification (PD; NO3–-N → NO2–-N) under mainstream conditions. Ammonia (NH4+-N) was partly oxidized to NO3–-N and removed via a PD coupled anammox (PD/A) process by mixing the nitrifying effluents with raw wastewater (NH4+-N of 57.87 mg L–1, COD of 176.02 mg L–1). Excellent effluent quality was obtained with< 5 mg L–1 of total nitrogen (TN) despite frequent temperature fluctuations (25.7–16.3 °C). The genus Thauera (responsible for PD) was the dominant denitrifiers (36.4%–37.4%) and coexisted with Candidatus Brocadia (anammox bacteria; 0.33%–0.46%). The efficient PD/A allowed up to 50% reduction in aeration energy consumption, 80% decrease in organic resource demand, and lower nitrous oxide (N2O) production compared to conventional nitrification/denitrification process. Our study demonstrates that coupling anammox with flexible NO2–-N supply has great potential as a stable and efficient mainstream wastewater treatment.
0

Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting

Ali Han et al.Dec 25, 2016
Hydrogen is essential to many industrial processes and could play an important role as an ideal clean energy carrier for future energy supply. Herein, we report for the first time the growth of crystalline Cu3P phosphide nanosheets on conductive nickel foam (Cu3P@NF) for electrocatalytic and visible light-driven overall water splitting. Our results show that the Cu3P@NF electrode can be used as an efficient Janus catalyst for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). For OER catalysis, a current density of 10 mA/cm2 requires an overpotential of only ∼320 mV and the slope of the Tafel plot is as low as 54 mV/dec in 1.0 M KOH. For HER catalysis, the overpotential is only ∼105 mV to achieve a catalytic current density of 10 mA cm–2. Moreover, overall water splitting can be achieved in a water electrolyzer based on the Cu3P@NF electrode, which showed a catalytic current density of 10 mA/cm2 under an applied voltage of ∼1.67 V. The same current density can also be obtained using a silicon solar cell under ∼1.70 V for both the HER and the OER. This new Janus Cu3P@NF electrode is made of inexpensive and nonprecious metal-based materials, which opens new possibilities based on copper to exploit overall water splitting for hydrogen production. To the best of our knowledge, such high performance of a copper-based water oxidation and overall water splitting catalyst has not been reported to date.
0

Combined Partial Denitrification (PD)-Anammox: A method for high nitrate wastewater treatment

Rui Du et al.Mar 14, 2019
Elimination of nitrogen pollution from wastewater containing high-strength nitrate (NO3−-N) is a significant issue to prevent deterioration of water quality and eutrophication of receiving water body. Traditional denitrification process faces several challenges including the huge organic carbon demand, intermediate products accumulation, and long acclimatization period. In this study, an efficient solution was given by a novel two-stage Partial Denitrification (PD)-Anammox process. High NO3−-N (1000 mg N/L) wastewater and municipal sewage (COD: 182.5 mg/L, ammonia (NH4+-N): 58.3 mg/L) were simultaneously introduced to the PD reactor for NO3−-N converting to NO2−-N. The NH4+-N and NO2−-N in effluent of PD were removed in subsequent anammox reactor. Results showed that a satisfactory nitrogen removal was achieved by optimizing the volume ratios of influent NO3−-N and municipal sewage, as well as the external organic matter dosage. The NO3−-N removal efficiency reached up to 95.8% without accommodation period, along with the NH4+-N removal achieving 92.8%. Anammox contributed to 78.9% of TN removal despite the high COD (76.5–98.6 mg/L) in PD effluent was introduced, indicating the significant stability of the integrated process. The microbial analysis suggested that the Candidatus Brocadia, identified as anammox bacteria, cooperated stable with denitrifying bacteria in 215-day operation. The PD-Anammox process offers an economically and technically attractive approach in the high NO3−-N wastewater treatment since it has great advantages of much low carbon demand, minimal sludge production, enabling simultaneous treatment of municipal sewage, and avoiding the common issues in traditional denitrification process.
68

Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress

T. Brian et al.Aug 16, 2022
ABSTRACT Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that modulating aspects of metabolism could alter cell state along differentiation trajectories. Here we find that nucleotide depletion and DNA replication stress are common drivers of cell state progression across a variety of normal and transformed hematopoietic systems. DNA replication stress-induced cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length. In systems where differentiation is blocked by oncogenic transcription factor expression, replication stress leads to increased activity at primed regulatory loci and expression of lineage-appropriate maturation genes while progenitor TF activity is still present. Altering the baseline cell state by manipulating the cohort of transcription factors expressed redirects the effect of replication stress towards induction of a different set of lineage-specific genes. The ability of replication stress to selectively activate primed maturation programs across different cellular contexts suggests a general mechanism by which metabolism can promote lineage-appropriate and potentially therapeutically relevant cell state transitions.
68
Citation5
0
Save
0

Linkage Regulation of β-Ketoamine Covalent Organic Frameworks for Boosting Photocatalytic Overall Water Splitting

Yiwen Yang et al.Jan 7, 2025
Two dimensional β-ketoamine covalent organic frameworks (2D TP-COFs) are one category of promising metal-free catalysts for photocatalytic overall water splitting (OWS) because of their unusual stability and versatile electronic/optical properties. However, none of the currently reported TP-COFs can accomplish the hydrogen evolution (HER) and oxygen evolution reactions (OER) simultaneously without adding any sacrificial agents and cocatalysts. To address this challenging issue, we rationally designed 23 2D TP-COFs by regulating the linkage groups and comprehensively evaluated their OWS activity by using the first-principles method. First, the electronic band structure calculations at the HSE06 level reveal that the band gap can be reasonably adjusted with values ranging from 1.67–3.16 eV. Among these 23 systems, 10 TP-COFs are realized to match well with both the chemical potentials of H2/H+ and O2/H2O, which are capable of visible-light-driven OWS from an electronic perspective. Further thermal activity results on OWS demonstrate that only Hep-BDA (heptazine-aniline) and Bpy-4 (bipyrimidinamine) based COFs can satisfy the completely spontaneous of HER and OER under light irradiation and neutral conditions. Importantly, the calculated small exciton binding energies and high carrier mobility for Hep-BDA and Bpy-4 TP-COFs propose they are potentially applied in photocatalytic OWS. We also achieved the theoretical energy conversion efficiency of Hep-BDA can reach as high as 13.01%. Because there are very few successful applications of TP-COFs on OWS, this theoretical work not only offers valuable insights and innovative ideas for the exploration of novel metal-free photocatalysts for OWS but also supplies a direction for the development of new TP-COF derivatives.
Load More