YZ
Yuanheng Zhu
Author with expertise in Adaptive Dynamic Programming for Optimal Control
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
596
h-index:
24
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Experience Replay for Optimal Control of Nonzero-Sum Game Systems With Unknown Dynamics

Dongbin Zhao et al.Oct 26, 2015
In this paper, an approximate online equilibrium solution is developed for an N -player nonzero-sum (NZS) game systems with completely unknown dynamics. First, a model identifier based on a three-layer neural network (NN) is established to reconstruct the unknown NZS games systems. Moreover, the identifier weight vector is updated based on experience replay technique which can relax the traditional persistence of excitation condition to a simplified condition on recorded data. Then, the single-network adaptive dynamic programming (ADP) with experience replay algorithm is proposed for each player to solve the coupled nonlinear Hamilton- (HJ) equations, where only the critic NN weight vectors are required to tune for each player. The feedback Nash equilibrium is provided by the solution of the coupled HJ equations. Based on the experience replay technique, a novel critic NN weights tuning law is proposed to guarantee the stability of the closed-loop system and the convergence of the value functions. Furthermore, a Lyapunov-based stability analysis shows that the uniform ultimate boundedness of the closed-loop system is achieved. Finally, two simulation examples are given to verify the effectiveness of the proposed control scheme.
0

Event-Triggered $H_\infty $ Control for Continuous-Time Nonlinear System via Concurrent Learning

Qichao Zhang et al.Mar 28, 2016
In this paper, the H ∞ optimal control problem for a class of continuous-time nonlinear systems is investigated using event-triggered method. First, the H ∞ optimal control problem is formulated as a two-player zero-sum (ZS) differential game. Then, an adaptive triggering condition is derived for the ZS game with an event-triggered control policy and a time-triggered disturbance policy. The event-triggered controller is updated only when the triggering condition is not satisfied. Therefore, the communication between the plant and the controller is reduced. Furthermore, a positive lower bound on the minimal intersample time is provided to avoid Zeno behavior. For implementation purpose, the event-triggered concurrent learning algorithm is proposed, where only one critic neural network (NN) is used to approximate the value function, the control policy and the disturbance policy. During the learning process, the traditional persistence of excitation condition is relaxed using the recorded data and instantaneous data together. Meanwhile, the stability of closed-loop system and the uniform ultimate boundedness (UUB) of the critic NN's parameters are proved by using Lyapunov technique. Finally, simulation results verify the feasibility to the ZS game and the corresponding H ∞ control problem.
0

Event-Triggered Optimal Control for Partially Unknown Constrained-Input Systems via Adaptive Dynamic Programming

Yuanheng Zhu et al.Aug 2, 2016
Event-triggered control has been an effective tool in dealing with problems with finite communication and computation resources. In this paper, we design an event-triggered control for nonlinear constrained-input continuous-time systems based on the optimal policy. Constraints on controls are handled using a bounded function. To learn the optimal solution with partially unknown dynamics, an online adaptive dynamic programming algorithm is proposed. The identifier network, the critic network, and the actor network are employed to approximate the unknown drift dynamics, the optimal value, and the optimal policy, respectively. The identifier is tuned based on online data, which further trains the critic and actor at triggering instants. A concurrent learning technique repeatedly uses past data to train the critic. Stability of the closed-loop system, and convergence of neural networks to the optimal solutions are proved by Lyapunov analysis. In the end, the algorithm is applied to the overhead crane system to observe the performance. The event-triggered optimal controller with constraints stabilizes the system and consumes much less sampling times.