Traffic Anomaly Detection (TAD) is an important and difficult task in Intelligent Transportation Systems (ITS) . Traffic anomaly events are sparse in both spatial and temporal spaces, posing a challenge to the performance of model. Moreover, a single traffic anomaly event can impact multiple road sections in the neighborhood, further undermining the accuracy of TAD. In this paper, we propose a new TAD method based on spatio-temporal hypergraph convolutional neural network. Specifically, we adopt a spatial–temporal augmentation approach for traffic data. This will enhance the performance of detecting sparse anomalies. Meanwhile, we introduce a hypergraph learning method to model the road network. This could capture the spreading features of anomalies for better detection results. Aditionally, we design a dynamic hypergraph construction method to extract the evolving relationships of road segments. The proposed model evaluation on the Beijing (SE-BJ) dataset for TAD reveals superior performance compared to state-of-the-art ones.